trocr-small-korean

Model Details

TrOCR์€ Encoder-Decoder ๋ชจ๋ธ๋กœ, ์ด๋ฏธ์ง€ ํŠธ๋žœ์Šคํฌ๋จธ ์ธ์ฝ”๋”์™€ ํ…์ŠคํŠธ ํŠธ๋žœ์Šคํฌ๋จธ ๋””์ฝ”๋”๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฏธ์ง€ ์ธ์ฝ”๋”๋Š” DeiT ๊ฐ€์ค‘์น˜๋กœ ์ดˆ๊ธฐํ™”๋˜์—ˆ๊ณ , ํ…์ŠคํŠธ ๋””์ฝ”๋”๋Š” ์ž์ฒด์ ์œผ๋กœ ํ•™์Šตํ•œ RoBERTa ๊ฐ€์ค‘์น˜๋กœ ์ดˆ๊ธฐํ™”๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

์ด ์—ฐ๊ตฌ๋Š” ๊ตฌ๊ธ€์˜ TPU Research Cloud(TRC)๋ฅผ ํ†ตํ•ด ์ง€์›๋ฐ›์€ Cloud TPU๋กœ ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

How to Get Started with the Model

import torch

from transformers import VisionEncoderDecoderModel

model = VisionEncoderDecoderModel.from_pretrained("team-lucid/trocr-small-korean")

pixel_values = torch.rand(1, 3, 384, 384)
generated_ids = model.generate(pixel_values)

Training Details

Training Data

ํ•ด๋‹น ๋ชจ๋ธ์€ synthtiger๋กœ ํ•ฉ์„ฑ๋œ 6M๊ฐœ์˜ ์ด๋ฏธ์ง€๋กœ ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค

Training Hyperparameters

Hyperparameter Small
Warmup Steps 4,000
Learning Rates 1e-4
Batch Size 512
Weight Decay 0.01
Max Steps 500,000
Learning Rate Decay 0.1
Adamฮฒ1Adam\beta_1 0.9
Adamฮฒ2Adam\beta_2 0.98
Downloads last month
364
Safetensors
Model size
54.5M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using team-lucid/trocr-small-korean 2