deberta-v3-base-korean

Model Details

DeBERTa는 Disentangled Attention과 Enhanced Masked Language Model을 통해 BERT의 성능을 향상시킨 모델입니다. 그중 DeBERTa V3은 ELECTRA-Style Pre-Training에 Gradient-Disentangled Embedding Sharing을 적용하여 DeBERTA를 개선했습니다.

이 연구는 구글의 TPU Research Cloud(TRC)를 통해 지원받은 Cloud TPU로 학습되었습니다.

How to Get Started with the Model

from transformers import AutoTokenizer, DebertaV2ForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("team-lucid/deberta-v3-base-korean")
model = DebertaV2ForSequenceClassification.from_pretrained("team-lucid/deberta-v3-base-korean")

inputs = tokenizer("안녕, 세상!", return_tensors="pt")
outputs = model(**inputs)

Evaluation

Backbone
Parameters(M)
NSMC
(acc)
PAWS
(acc)
KorNLI
(acc)
KorSTS
(spearman)
Question Pair
(acc)
DistilKoBERT 22M 88.41 62.55 70.55 73.21 92.48
KoBERT 85M 89.63 80.65 79.00 79.64 93.93
XLM-Roberta-Base 85M 89.49 82.95 79.92 79.09 93.53
KcBERT-Base 85M 89.62 66.95 74.85 75.57 93.93
KcBERT-Large 302M 90.68 70.15 76.99 77.49 94.06
KoELECTRA-Small-v3 9.4M 89.36 77.45 78.60 80.79 94.85
KoELECTRA-Base-v3 85M 90.63 84.45 82.24 85.53 95.25
Ours
DeBERTa-xsmall 22M 91.21 84.40 82.13 83.90 95.38
DeBERTa-small 43M 91.34 83.90 81.61 82.97 94.98
DeBERTa-base 86M 91.22 85.5 82.81 84.46 95.77

* 다른 모델의 결과는 KcBERT-FinetuneKoELECTRA를 참고했으며, Hyperparameter 역시 다른 모델과 유사하게 설정습니다.

Model Memory Requirements

dtype Largest Layer or Residual Group Total Size Training using Adam
float32 187.79 MB 513.77 MB 2.01 GB
float16/bfloat16 93.9 MB 256.88 MB 1.0 GB
int8 46.95 MB 128.44 MB 513.77 MB
int4 23.47 MB 64.22 MB 256.88 MB
Downloads last month
775
Safetensors
Model size
135M params
Tensor type
I64
·
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for team-lucid/deberta-v3-base-korean

Finetunes
3 models

Collection including team-lucid/deberta-v3-base-korean