abhishek's picture
abhishek HF staff
Commit From AutoNLP
f638248
|
raw
history blame
1.55 kB
---
tags:
- autonlp
- question-answering
language: unk
widget:
- text: "Who loves AutoNLP?"
context: "Everyone loves AutoNLP"
datasets:
- teacookies/autonlp-data-more_fine_tune_24465520
co2_eq_emissions: 83.78453848505326
---
# Model Trained Using AutoNLP
- Problem type: Extractive Question Answering
- Model ID: 26265902
- CO2 Emissions (in grams): 83.78453848505326
## Validation Metrics
- Loss: 0.5470030903816223
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265902
```
Or Python API:
```
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265902", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265902", use_auth_token=True)
from transformers import BertTokenizer, BertForQuestionAnswering
question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits
```