Word2Vec Sr |
|
Обучаван над корпусом српског језика - 9.5 милијарди речи Међу датотекама се налазе два модела (CBOW и SkipGram варијанте) |
Trained on the Serbian language corpus - 9.5 billion words There are two models among the files (CBOW and SkipGram variants) |
from gensim.models import Word2Vec
model = Word2Vec.load("TeslaSG")
examples = [
("dim", "zavesa"),
("staklo", "zavesa"),
("ormar", "zavesa"),
("prozor", "zavesa"),
("draperija", "zavesa")
]
for e in examples:
model.wv.similarity(e[0], e[1]))
0.5193785
0.5763144
0.59982747
0.6022524
0.7117646
@inproceedings{stankovic-dict2vec,
author = {Ranka Stanković, Jovana Rađenović, Mihailo Škorić, Marko Putniković},
title = {Learning Word Embeddings using Lexical Resources and Corpora},
booktitle = {15th International Conference on Information Society and Technology, ISIST 2025, Kopaonik},
year = {2025},
address = {Kopaonik, Belgrade}
publisher = {SASA, Belgrade},
url = {https://doi.org/10.5281/zenodo.15093900}
}

Истраживање jе спроведено уз подршку Фонда за науку Републике Србиjе, #7276, Text Embeddings – Serbian Language Applications – TESLA |
This research was supported by the Science Fund of the Republic of Serbia, #7276, Text Embeddings - Serbian Language Applications - TESLA |
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no library tag.