FastText Sr |
|
Обучаван над корпусом српског језика - 9.5 милијарди речи Међу датотекама се налазе модели у Gensim, али и оригиналном формату |
Trained on the Serbian language corpus - 9.5 billion words The files include models in both Gensim and the original format. |
from gensim.models import FastText
model = Word2Vec.load("TeslaFT")
examples = [
("dim", "zavesa"),
("staklo", "zavesa"),
("ormar", "zavesa"),
("prozor", "zavesa"),
("draperija", "zavesa")
]
for e in examples:
model.wv.cosine_similarities(ft.wv[e[0]], ft.wv[[e[1]]])[0]
0.5305264
0.7095266
0.6041575
0.5771946
0.8870213
from gensim.models.fasttext import load_facebook_model
model = load_facebook_model("TeslaFT.bin")
examples = [
("dim", "zavesa"),
("staklo", "zavesa"),
("ormar", "zavesa"),
("prozor", "zavesa"),
("draperija", "zavesa")
]
for e in examples:
model.wv.cosine_similarities(ft.wv[e[0]], ft.wv[[e[1]]])[0]
0.5305264
0.7095266
0.6041575
0.5771946
0.8870213
@inproceedings{stankovic-dict2vec,
author = {Ranka Stanković, Jovana Rađenović, Mihailo Škorić, Marko Putniković},
title = {Learning Word Embeddings using Lexical Resources and Corpora},
booktitle = {15th International Conference on Information Society and Technology, ISIST 2025, Kopaonik},
year = {2025},
address = {Kopaonik, Belgrade}
publisher = {SASA, Belgrade},
url = {https://doi.org/10.5281/zenodo.15093900}
}

Истраживање jе спроведено уз подршку Фонда за науку Републике Србиjе, #7276, Text Embeddings – Serbian Language Applications – TESLA |
This research was supported by the Science Fund of the Republic of Serbia, #7276, Text Embeddings - Serbian Language Applications - TESLA |
- Downloads last month
- 21
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.