|
--- |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: tarsssss/eng-jagoy-t5-001 |
|
results: [] |
|
library_name: transformers |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# tarsssss/eng-jagoy-t5-001 |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 4.7399 |
|
- Validation Loss: 5.1356 |
|
- Epoch: 138 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 7.8603 | 7.4105 | 0 | |
|
| 7.3775 | 7.1273 | 1 | |
|
| 7.1632 | 6.9598 | 2 | |
|
| 7.0228 | 6.8372 | 3 | |
|
| 6.9085 | 6.7335 | 4 | |
|
| 6.8226 | 6.6458 | 5 | |
|
| 6.7451 | 6.5671 | 6 | |
|
| 6.6785 | 6.5022 | 7 | |
|
| 6.6254 | 6.4409 | 8 | |
|
| 6.5606 | 6.3842 | 9 | |
|
| 6.5163 | 6.3361 | 10 | |
|
| 6.4682 | 6.2908 | 11 | |
|
| 6.4250 | 6.2436 | 12 | |
|
| 6.3749 | 6.1907 | 13 | |
|
| 6.3293 | 6.1494 | 14 | |
|
| 6.2822 | 6.1098 | 15 | |
|
| 6.2560 | 6.0750 | 16 | |
|
| 6.2078 | 6.0508 | 17 | |
|
| 6.1839 | 6.0229 | 18 | |
|
| 6.1561 | 5.9944 | 19 | |
|
| 6.1146 | 5.9732 | 20 | |
|
| 6.0885 | 5.9490 | 21 | |
|
| 6.0587 | 5.9243 | 22 | |
|
| 6.0366 | 5.9064 | 23 | |
|
| 6.0135 | 5.8857 | 24 | |
|
| 5.9904 | 5.8675 | 25 | |
|
| 5.9681 | 5.8482 | 26 | |
|
| 5.9473 | 5.8262 | 27 | |
|
| 5.9263 | 5.8127 | 28 | |
|
| 5.9031 | 5.7896 | 29 | |
|
| 5.8827 | 5.7721 | 30 | |
|
| 5.8566 | 5.7482 | 31 | |
|
| 5.8406 | 5.7355 | 32 | |
|
| 5.8285 | 5.7231 | 33 | |
|
| 5.7944 | 5.7049 | 34 | |
|
| 5.7822 | 5.6968 | 35 | |
|
| 5.7567 | 5.6813 | 36 | |
|
| 5.7526 | 5.6650 | 37 | |
|
| 5.7363 | 5.6614 | 38 | |
|
| 5.7132 | 5.6398 | 39 | |
|
| 5.6945 | 5.6383 | 40 | |
|
| 5.6786 | 5.6243 | 41 | |
|
| 5.6636 | 5.6071 | 42 | |
|
| 5.6527 | 5.5955 | 43 | |
|
| 5.6390 | 5.5876 | 44 | |
|
| 5.6198 | 5.5754 | 45 | |
|
| 5.6082 | 5.5663 | 46 | |
|
| 5.6070 | 5.5572 | 47 | |
|
| 5.5782 | 5.5493 | 48 | |
|
| 5.5679 | 5.5487 | 49 | |
|
| 5.5520 | 5.5301 | 50 | |
|
| 5.5307 | 5.5261 | 51 | |
|
| 5.5284 | 5.5089 | 52 | |
|
| 5.5160 | 5.5003 | 53 | |
|
| 5.4976 | 5.4981 | 54 | |
|
| 5.4864 | 5.4860 | 55 | |
|
| 5.4795 | 5.4816 | 56 | |
|
| 5.4653 | 5.4652 | 57 | |
|
| 5.4484 | 5.4639 | 58 | |
|
| 5.4335 | 5.4580 | 59 | |
|
| 5.4231 | 5.4454 | 60 | |
|
| 5.4132 | 5.4358 | 61 | |
|
| 5.4064 | 5.4349 | 62 | |
|
| 5.3886 | 5.4261 | 63 | |
|
| 5.3913 | 5.4193 | 64 | |
|
| 5.3692 | 5.4138 | 65 | |
|
| 5.3556 | 5.4028 | 66 | |
|
| 5.3469 | 5.4001 | 67 | |
|
| 5.3421 | 5.3942 | 68 | |
|
| 5.3194 | 5.3826 | 69 | |
|
| 5.3243 | 5.3799 | 70 | |
|
| 5.3081 | 5.3713 | 71 | |
|
| 5.2921 | 5.3737 | 72 | |
|
| 5.2845 | 5.3681 | 73 | |
|
| 5.2754 | 5.3601 | 74 | |
|
| 5.2594 | 5.3524 | 75 | |
|
| 5.2527 | 5.3420 | 76 | |
|
| 5.2496 | 5.3367 | 77 | |
|
| 5.2360 | 5.3320 | 78 | |
|
| 5.2193 | 5.3253 | 79 | |
|
| 5.2141 | 5.3178 | 80 | |
|
| 5.1993 | 5.3150 | 81 | |
|
| 5.1923 | 5.3157 | 82 | |
|
| 5.1875 | 5.3097 | 83 | |
|
| 5.1776 | 5.3051 | 84 | |
|
| 5.1693 | 5.3050 | 85 | |
|
| 5.1533 | 5.3115 | 86 | |
|
| 5.1567 | 5.2943 | 87 | |
|
| 5.1348 | 5.2757 | 88 | |
|
| 5.1317 | 5.2849 | 89 | |
|
| 5.1191 | 5.2846 | 90 | |
|
| 5.1102 | 5.2742 | 91 | |
|
| 5.1054 | 5.2725 | 92 | |
|
| 5.0944 | 5.2624 | 93 | |
|
| 5.0906 | 5.2560 | 94 | |
|
| 5.0712 | 5.2502 | 95 | |
|
| 5.0719 | 5.2495 | 96 | |
|
| 5.0628 | 5.2498 | 97 | |
|
| 5.0597 | 5.2454 | 98 | |
|
| 5.0402 | 5.2420 | 99 | |
|
| 5.0308 | 5.2441 | 100 | |
|
| 5.0193 | 5.2379 | 101 | |
|
| 5.0198 | 5.2298 | 102 | |
|
| 5.0110 | 5.2315 | 103 | |
|
| 5.0087 | 5.2304 | 104 | |
|
| 4.9906 | 5.2261 | 105 | |
|
| 4.9883 | 5.2288 | 106 | |
|
| 4.9818 | 5.2069 | 107 | |
|
| 4.9612 | 5.2003 | 108 | |
|
| 4.9560 | 5.2009 | 109 | |
|
| 4.9453 | 5.2123 | 110 | |
|
| 4.9385 | 5.2136 | 111 | |
|
| 4.9238 | 5.2178 | 112 | |
|
| 4.9291 | 5.1994 | 113 | |
|
| 4.9097 | 5.1940 | 114 | |
|
| 4.9093 | 5.1840 | 115 | |
|
| 4.9057 | 5.1824 | 116 | |
|
| 4.8907 | 5.1894 | 117 | |
|
| 4.8919 | 5.1841 | 118 | |
|
| 4.8699 | 5.1806 | 119 | |
|
| 4.8671 | 5.1795 | 120 | |
|
| 4.8629 | 5.1696 | 121 | |
|
| 4.8552 | 5.1646 | 122 | |
|
| 4.8414 | 5.1709 | 123 | |
|
| 4.8444 | 5.1534 | 124 | |
|
| 4.8330 | 5.1698 | 125 | |
|
| 4.8231 | 5.1501 | 126 | |
|
| 4.8198 | 5.1565 | 127 | |
|
| 4.8004 | 5.1522 | 128 | |
|
| 4.7996 | 5.1478 | 129 | |
|
| 4.7915 | 5.1409 | 130 | |
|
| 4.7845 | 5.1484 | 131 | |
|
| 4.7837 | 5.1476 | 132 | |
|
| 4.7727 | 5.1446 | 133 | |
|
| 4.7729 | 5.1379 | 134 | |
|
| 4.7628 | 5.1379 | 135 | |
|
| 4.7568 | 5.1359 | 136 | |
|
| 4.7400 | 5.1292 | 137 | |
|
| 4.7399 | 5.1356 | 138 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- TensorFlow 2.10.0 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.13.3 |