wav2vec2-large-robust-finetuned-ie

This model is a fine-tuned version of facebook/wav2vec2-large-robust on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1133
  • Accuracy: 0.5536

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3699 1.0 102 1.3843 0.2502
1.2027 2.0 204 1.1851 0.4200
1.047 3.0 306 1.1356 0.4520
1.0414 4.0 408 1.1702 0.4627
0.9885 5.0 510 1.0295 0.5354
0.9873 6.0 612 1.0988 0.5228
0.9309 7.0 714 1.1347 0.5257
0.8401 8.0 816 1.1502 0.5286
0.8253 9.0 918 1.0792 0.5577
0.8741 10.0 1020 1.2591 0.5267
0.8177 11.0 1122 1.3007 0.5141
0.7633 12.0 1224 1.1962 0.5509
0.8185 13.0 1326 1.1022 0.5984
0.7481 14.0 1428 1.1741 0.5694
0.719 15.0 1530 1.1645 0.5781

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tarasabkar/wav2vec2-large-robust-finetuned-ie

Finetuned
(1)
this model