metadata
license: bsd-3-clause
base_model: LongSafari/hyenadna-large-1m-seqlen-hf
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: hyenadna-large-1m-seqlen-hf_ft_BioS45_1kbpHG19_DHSs_H3K27AC
results: []
hyenadna-large-1m-seqlen-hf_ft_BioS45_1kbpHG19_DHSs_H3K27AC
This model is a fine-tuned version of LongSafari/hyenadna-large-1m-seqlen-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4630
- F1 Score: 0.8133
- Precision: 0.7796
- Recall: 0.85
- Accuracy: 0.7964
- Auc: 0.8733
- Prc: 0.8740
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
---|---|---|---|---|---|---|---|---|---|
0.5578 | 0.2103 | 500 | 0.5077 | 0.7339 | 0.8087 | 0.6718 | 0.7459 | 0.8407 | 0.8258 |
0.5127 | 0.4207 | 1000 | 0.4832 | 0.7813 | 0.7861 | 0.7766 | 0.7732 | 0.8460 | 0.8411 |
0.4843 | 0.6310 | 1500 | 0.5096 | 0.7670 | 0.8214 | 0.7194 | 0.7720 | 0.8533 | 0.8519 |
0.4833 | 0.8414 | 2000 | 0.4942 | 0.8042 | 0.7317 | 0.8927 | 0.7732 | 0.8633 | 0.8521 |
0.4748 | 1.0517 | 2500 | 0.4991 | 0.7792 | 0.7997 | 0.7597 | 0.7753 | 0.8581 | 0.8511 |
0.4723 | 1.2621 | 3000 | 0.4819 | 0.7833 | 0.8276 | 0.7435 | 0.7854 | 0.8618 | 0.8531 |
0.474 | 1.4724 | 3500 | 0.4547 | 0.8026 | 0.8003 | 0.8048 | 0.7934 | 0.8717 | 0.8655 |
0.4531 | 1.6828 | 4000 | 0.4560 | 0.8197 | 0.7537 | 0.8984 | 0.7939 | 0.8696 | 0.8629 |
0.4601 | 1.8931 | 4500 | 0.4601 | 0.8135 | 0.7554 | 0.8815 | 0.7892 | 0.8658 | 0.8569 |
0.441 | 2.1035 | 5000 | 0.4680 | 0.8103 | 0.7545 | 0.875 | 0.7863 | 0.8610 | 0.8497 |
0.4267 | 2.3138 | 5500 | 0.4784 | 0.8150 | 0.7775 | 0.8565 | 0.7972 | 0.8705 | 0.8622 |
0.4336 | 2.5242 | 6000 | 0.4562 | 0.8032 | 0.7891 | 0.8177 | 0.7909 | 0.8684 | 0.8590 |
0.446 | 2.7345 | 6500 | 0.4630 | 0.8133 | 0.7796 | 0.85 | 0.7964 | 0.8733 | 0.8740 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0