cs_subcate / README.md
tangminhanh's picture
cs_subcate
75aa983 verified
|
raw
history blame
2.35 kB
metadata
license: mit
base_model: tangminhanh/ts_subcate
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: cs_subcate
    results: []

cs_subcate

This model is a fine-tuned version of tangminhanh/ts_subcate on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0517
  • Accuracy: 0.6283
  • F1: 0.6777
  • Precision: 0.7292
  • Recall: 0.6330

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 195 0.0649 0.2715 0.4110 0.8554 0.2704
No log 2.0 390 0.0532 0.5113 0.6149 0.7639 0.5145
0.0785 3.0 585 0.0515 0.5688 0.6404 0.7225 0.5750
0.0785 4.0 780 0.0496 0.5979 0.6606 0.7225 0.6085
0.0785 5.0 975 0.0492 0.6147 0.6753 0.7367 0.6233
0.0386 6.0 1170 0.0499 0.6141 0.6701 0.7151 0.6304
0.0386 7.0 1365 0.0503 0.6206 0.6754 0.7265 0.6310
0.0283 8.0 1560 0.0512 0.6199 0.6717 0.7129 0.6349
0.0283 9.0 1755 0.0515 0.6193 0.6720 0.7228 0.6278
0.0283 10.0 1950 0.0517 0.6283 0.6777 0.7292 0.6330

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1