Steganography Neural Network Model Card

Model Overview

Task: Image Steganography (Message Embedding and Extraction)
Architecture Type: Encoder-Decoder Neural Network
Primary Use Case: Embedding and recovering hidden messages in images

Technical Specifications

  • Parameters: 980,548
  • Model Size: 3.74 MB
  • Precision: torch.float32
  • FLOPs: 1,954,176
  • Input Resolution: 512 × 512 pixels
  • Framework: PyTorch

Architecture Details

Encoder Network

  • Input: 4 channels (RGB + message), 512×512px
  • Output: 3 channels (RGB stego image), 512×512px
  • Key Components:
    • Initial Conv (4→64 channels)
    • Backbone with SE blocks and dilated convolutions
    • Residual connections
    • Final weighted combination (0.9 × original + 0.1 × encoded)

Decoder Network

  • Input: 3 channels (stego image), 512×512px
  • Output: 1 channel (recovered message), 512×512px
  • Key Components:
    • Feature extraction (3→64→128 channels)
    • SE blocks and residual connections
    • Message extraction pathway

Training Details

  • Hardware: GTX 1080 GPU
  • Epochs: 600
  • Optimizer: AdamW (lr=0.001, weight_decay=0.01)
  • Scheduler: Cosine Annealing (min_lr=1e-6)
  • Loss Functions:
    • Image Loss: 0.95×MSE + 0.05×(1-SSIM)
    • Message Loss: MSE
    • Combined with dynamic alpha weighting

Key Features

  • Group Normalization for batch-size independence
  • SiLU activation functions throughout
  • Squeeze-and-Excitation blocks for channel attention
  • Dilated convolutions in encoder
  • Skip connections for detail preservation

Performance Characteristics

  • Maintains visual image quality while embedding messages
  • Optimized for both image fidelity and message recovery
  • Lightweight architecture (<1M parameters)

Limitations and Biases

  • Fixed input resolution of 512×512 pixels

Technical Requirements

  • PyTorch environment
  • GPU recommended for optimal performance
  • Standard deep learning dependencies
  • Sufficient memory for 3.74 MB model

Citation and Contact

  • Model source and citation information not provided
  • Contact information for maintainers not specified
Downloads last month

-

Downloads are not tracked for this model. How to track
Safetensors
Model size
981k params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .