簡易練習測試問題?
您好 我有使用您給的簡易練習程式碼
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
我從https://huggingface.co/settings/tokens 設定一個new User Access Tokens
my_token = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
load model
model_name = "taide/TAIDE-LX-7B-Chat"
程式碼和taide資料夾是同一個路徑,taide底下的TAIDE-LX-7B-Chat資料夾裡面下載 taide/TAIDE-LX-7B-Chat/tree/main 所有檔案
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=True, device_map="auto", token=my_token)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
prepare prompt
question = "臺灣最高的建築物是?"
chat = [
{"role": "user", "content": f"{question}"},
]
generate response
x = pipe(chat, max_new_tokens=1024)
print(f"TAIDE: {x}")
------但還是有以下錯誤,好像我還是被檔的樣子,不曉得是什麼原因,我明明有申請token 而且
我都有填寫授權資料上傳了 謝謝------------------------------------
Traceback (most recent call last):
File "c:\Users....................\run_t.py", line 8, in
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
File "C:\Users\AppData\Local\Programs\Python\Python310\lib\site-packages\transformers\models\auto\tokenization_auto.py", line 819, in from_pretrained
config = AutoConfig.from_pretrained(
File "C:\Users\AppData\Local\Programs\Python\Python310\lib\site-packages\transformers\models\auto\configuration_auto.py", line 928, in from_pretrained
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
File "C:\Users\AppData\Local\Programs\Python\Python310\lib\site-packages\transformers\configuration_utils.py", line 631, in get_config_dict
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
File "C:\Users\AppData\Local\Programs\Python\Python310\lib\site-packages\transformers\configuration_utils.py", line 686, in _get_config_dict
resolved_config_file = cached_file(
File "C:\Users\AppData\Local\Programs\Python\Python310\lib\site-packages\transformers\utils\hub.py", line 416, in cached_file
raise EnvironmentError(
OSError: You are trying to access a gated repo.
Make sure to have access to it at https://huggingface.co/taide/TAIDE-LX-7B-Chat.
401 Client Error. (Request ID: Root=1-663c1de2-0a1477535ad9168138f579be;daa556e3-531f-4d76-8e56-f88f4ea0c19d)
Cannot access gated repo for url https://huggingface.co/taide/TAIDE-LX-7B-Chat/resolve/main/config.json.
Access to model taide/TAIDE-LX-7B-Chat is restricted. You must be authenticated to access it.
您好,
謝謝您的回饋,範例已更新這個問題,請參考:https://huggingface.co/taide/TAIDE-LX-7B-Chat-4bit/discussions/3
Best regards.
您好,
謝謝您的回饋,範例已更新這個問題,請參考:https://huggingface.co/taide/TAIDE-LX-7B-Chat-4bit/discussions/3
Best regards.
後來還是不行 有這些錯誤
似乎說 load_in_4bit
and load_in_8bit
目前都沒有這種參數了
而且還叫我安裝這些套件,但是我明明 pip install之後 再次執行還是有這些error
pip install accelerate
pip install -i https://pypi.org/simple/ bitsandbytes
The load_in_4bit
and load_in_8bit
arguments are deprecated and will be removed in the future versions. Please, pass a BitsAndBytesConfig
object in quantization_config
argument instead.
Traceback (most recent call last):
File "c:\Users\ \run_t.py", line 32, in
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=True, device_map="auto", token=my_token)
File "C:\Users\ \AppData\Local\Programs\Python\Python310\lib\site-packages\transformers\models\auto\auto_factory.py", line 563, in from_pretrained
return model_class.from_pretrained(
File "C:\Users\ \AppData\Local\Programs\Python\Python310\lib\site-packages\transformers\modeling_utils.py", line 3165, in from_pretrained
hf_quantizer.validate_environment(
File "C:\Users\ \AppData\Local\Programs\Python\Python310\lib\site-packages\transformers\quantizers\quantizer_bnb_4bit.py", line 62, in validate_environment
raise ImportError(
ImportError: Using bitsandbytes
8-bit quantization requires Accelerate: pip install accelerate
and the latest version of bitsandbytes: pip install -i https://pypi.org/simple/ bitsandbytes
您好,
請參考以下討論,解決環境問題,謝謝您。
https://huggingface.co/taide/Llama3-TAIDE-LX-8B-Chat-Alpha1-4bit/discussions/3
Best regards.
了解 謝謝 您是說改成這樣嗎?
不過我目前測試的這台電腦 沒讀顯 RAM也只有8G 所以這鐵定無法跑是嘛? 謝謝
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
from torch import bfloat16
https://huggingface.co/docs/hub/security-tokens#user-access-tokens
my_token = "***********************************************************************" # 這行需換成您自己的 access token
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=bfloat16)
load model
model_name = "taide/Llama3-TAIDE-LX-8B-Chat-Alpha1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name,
load_in_4bit=True,
device_map="auto",
trust_remote_code=True,
quantization_config=bnb_config,
token=my_token)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
prepare prompt
question = "臺灣最高的建築物是?"
chat = [
{"role": "user", "content": f"{question}"},
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False)
generate response
x = pipe(f"{prompt}", max_new_tokens=1024)
print(f"TAIDE: {x}")
您好,
請參考以下文章,改成使用 GGUF 量化模型:
https://www.reddit.com/r/LocalLLaMA/comments/19f9z64/running_a_local_model_with_8gb_vram_is_it_even/
https://stackoverflow.com/questions/77630013/how-to-run-any-gguf-model-using-transformers-or-any-other-library
GGUF 量化模型,可以自己轉換,或用以下 repo:
https://huggingface.co/ZoneTwelve/TAIDE-LX-7B-Chat-GGUF
Best regards.