taicheng's picture
End of training
296dea4 verified
metadata
library_name: transformers
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: zephyr-7b-align-scan-7e-07-0.99-cosine-2.0
    results: []

zephyr-7b-align-scan-7e-07-0.99-cosine-2.0

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1727
  • Rewards/chosen: 2.6978
  • Rewards/rejected: 0.6816
  • Rewards/accuracies: 0.3472
  • Rewards/margins: 2.0163
  • Logps/rejected: -80.4399
  • Logps/chosen: -71.7662
  • Logits/rejected: -2.6444
  • Logits/chosen: -2.6613

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.9118 0.3484 100 0.8952 1.8796 1.1355 0.3353 0.7441 -79.9814 -72.5926 -2.5564 -2.5727
0.9553 0.6969 200 1.0700 2.5989 1.4006 0.3413 1.1983 -79.7136 -71.8661 -2.5726 -2.5893
0.4066 1.0453 300 1.0729 2.3164 0.9125 0.3433 1.4038 -80.2066 -72.1515 -2.5962 -2.6126
0.3805 1.3937 400 1.1546 2.9774 1.1937 0.3373 1.7837 -79.9225 -71.4837 -2.6247 -2.6413
0.3975 1.7422 500 1.1824 2.5463 0.5342 0.3452 2.0120 -80.5887 -71.9193 -2.6463 -2.6632

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1