taicheng's picture
End of training
e404ade verified
|
raw
history blame
3.14 kB
metadata
library_name: transformers
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: zephyr-7b-align-scan-2e-07-0.5-linear-2.0
    results: []

zephyr-7b-align-scan-2e-07-0.5-linear-2.0

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6464
  • Rewards/chosen: 0.4833
  • Rewards/rejected: -0.1353
  • Rewards/accuracies: 0.3710
  • Rewards/margins: 0.6186
  • Logps/rejected: -81.3989
  • Logps/chosen: -73.5245
  • Logits/rejected: -2.5552
  • Logits/chosen: -2.5716

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6562 0.3484 100 0.6328 0.6802 0.3841 0.3552 0.2961 -80.3602 -73.1308 -2.5405 -2.5565
0.6601 0.6969 200 0.6410 0.2989 -0.0897 0.3452 0.3887 -81.3078 -73.8934 -2.5169 -2.5332
0.4195 1.0453 300 0.6371 0.6242 0.1593 0.3532 0.4648 -80.8097 -73.2429 -2.5193 -2.5354
0.3956 1.3937 400 0.6460 0.4324 -0.1472 0.3631 0.5796 -81.4227 -73.6264 -2.5378 -2.5541
0.3945 1.7422 500 0.6465 0.3072 -0.2969 0.3710 0.6040 -81.7221 -73.8769 -2.5543 -2.5709

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1