metadata
license: mit
widget:
- text: >-
привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]супер, вот только
проснулся, у тебя как?
example_title: Dialog example 1
- text: привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм
example_title: Dialog example 2
- text: привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?
example_title: Dialog example 3
This classification model is based on cointegrated/rubert-tiny2. The model should be used to produce relevance and specificity of the last message in the context of a dialogue.
The labels explanation:
relevance
: is the last message in the dialogue relevant in the context of the full dialoguespecificity
: is the last message in the dialogue interesting and promotes the continuation of the dialogue
The preferable length of the dialogue is 4 where the last message is needed to be estimated
It is pretrained on corpus of dialog data from social networks and finetuned on tinkoff-ai/context_similarity. The performance of the model on validation split tinkoff-ai/context_similarity (with the best thresholds for validation samples):
f0.5 | ROC AUC | |
---|---|---|
relevance | 0.82 | 0.74 |
specificity | 0.81 | 0.8 |
The preferable usage:
# pip install transformers
import transformers
from transformers import AutoTokenizer, AutoModel
import torch
from typing import List, Dict
tokenizer = AutoTokenizer.from_pretrained("tinkoff-ai/response-quality-classifier-tiny")
model = AutoModel.from_pretrained("tinkoff-ai/response-quality-classifier-tiny")
# model.cuda()
context_3 = 'привет'
context_2 = 'привет!'
context_1 = 'как дела?'
response = 'у меня все хорошо, а у тебя как?'
sample = {
'context_3': context_3,
'context_2': context_2,
'context_1': context_1,
'response': response
}
SEP_TOKEN = '[SEP]'
CLS_TOKEN = '[CLS]'
RESPONSE_TOKEN = '[RESPONSE_TOKEN]'
MAX_SEQ_LENGTH = 128
sorted_dialog_columns = ['context_3', 'context_2', 'context_1', 'response']
def tokenize_dialog_data(
tokenizer: transformers.PreTrainedTokenizer,
sample: Dict,
max_seq_length: int,
sorted_dialog_columns: List,
):
"""
Tokenize both contexts and response of dialog data separately
"""
len_message_history = len(sorted_dialog_columns)
max_seq_length = min(max_seq_length, tokenizer.model_max_length)
max_each_message_length = max_seq_length // len_message_history - 1
messages = [sample[k] for k in sorted_dialog_columns]
result = {model_input_name: [] for model_input_name in tokenizer.model_input_names}
messages = [str(message) if message is not None else '' for message in messages]
tokens = tokenizer(
messages, padding=False, max_length=max_each_message_length, truncation=True, add_special_tokens=False
)
for model_input_name in tokens.keys():
result[model_input_name].extend(tokens[model_input_name])
return result
def merge_dialog_data(
tokenizer: transformers.PreTrainedTokenizer,
sample: Dict
):
cls_token = tokenizer(CLS_TOKEN, add_special_tokens=False)
sep_token = tokenizer(SEP_TOKEN, add_special_tokens=False)
response_token = tokenizer(RESPONSE_TOKEN, add_special_tokens=False)
model_input_names = tokenizer.model_input_names
result = {}
for model_input_name in model_input_names:
tokens = []
tokens.extend(cls_token[model_input_name])
for i, message in enumerate(sample[model_input_name]):
tokens.extend(message)
if i < len(sample[model_input_name]) - 2:
tokens.extend(sep_token[model_input_name])
elif i == len(sample[model_input_name]) - 2:
tokens.extend(response_token[model_input_name])
result[model_input_name] = torch.tensor([tokens])
if torch.cuda.is_available():
result[model_input_name] = result[model_input_name].cuda()
return result
tokenized_dialog = tokenize_dialog_data(tokenizer, sample, MAX_SEQ_LENGTH, sorted_dialog_columns)
tokens = merge_dialog_data(tokenizer, tokenized_dialog)
with torch.inference_mode():
logits = model(**tokens).logits
probas = torch.sigmoid(logits)[0].cpu().detach().numpy()
print(probas)