estimation-prometheus-gemma-2-2b
This model is a fine-tuned version of google/gemma-2-2b-jpn-it on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.4192
- Accuracy: 0.4235
- Spearmanr: 0.4236
- Kendalltau: 0.3285
- Pearsonr: 0.4779
- Rmse: 1.0679
- Mae: 0.8129
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Spearmanr | Kendalltau | Pearsonr | Rmse | Mae |
---|---|---|---|---|---|---|---|---|---|
4.38 | 0.2094 | 500 | 4.5787 | 0.3141 | 0.0241 | 0.0177 | 0.0263 | 1.3354 | 1.0377 |
3.4137 | 0.4188 | 1000 | 3.0643 | 0.3410 | 0.1413 | 0.1072 | 0.1555 | 1.2135 | 0.9624 |
2.8427 | 0.6281 | 1500 | 2.7700 | 0.3728 | 0.2953 | 0.2259 | 0.3155 | 1.1565 | 0.8857 |
2.7978 | 0.8375 | 2000 | 2.6360 | 0.3887 | 0.3524 | 0.2708 | 0.3844 | 1.1258 | 0.8747 |
2.5765 | 1.0469 | 2500 | 2.5750 | 0.4095 | 0.3797 | 0.2938 | 0.4191 | 1.1107 | 0.8387 |
2.5941 | 1.2563 | 3000 | 2.5392 | 0.4175 | 0.3839 | 0.2963 | 0.4286 | 1.1012 | 0.8465 |
2.3148 | 1.4657 | 3500 | 2.4901 | 0.4105 | 0.4069 | 0.3154 | 0.4536 | 1.0851 | 0.8245 |
2.6814 | 1.6750 | 4000 | 2.4642 | 0.4135 | 0.4100 | 0.3173 | 0.4635 | 1.0794 | 0.8221 |
2.5861 | 1.8844 | 4500 | 2.4569 | 0.4115 | 0.4152 | 0.3213 | 0.4668 | 1.0782 | 0.8185 |
2.5241 | 2.0938 | 5000 | 2.4320 | 0.4115 | 0.4196 | 0.3263 | 0.4733 | 1.0712 | 0.8132 |
2.5838 | 2.3032 | 5500 | 2.4252 | 0.4185 | 0.4197 | 0.3260 | 0.4755 | 1.0693 | 0.8125 |
2.4464 | 2.5126 | 6000 | 2.4232 | 0.4185 | 0.4217 | 0.3270 | 0.4768 | 1.0695 | 0.8110 |
2.4398 | 2.7219 | 6500 | 2.4218 | 0.4185 | 0.4221 | 0.3276 | 0.4764 | 1.0686 | 0.8122 |
2.3042 | 2.9313 | 7000 | 2.4192 | 0.4235 | 0.4236 | 0.3285 | 0.4779 | 1.0679 | 0.8129 |
Framework versions
- PEFT 0.15.1
- Transformers 4.50.2
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.