LLM as a Planer
Collection
Leveraging Large Language Models (LLMs) to plan their own application.
•
3 items
•
Updated
This model is a fine-tuned version of google/gemma-2-2b-jpn-it on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Spearmanr | Kendalltau | Pearsonr | Rmse | Mae |
---|---|---|---|---|---|---|---|---|
142.0495 | 0.2094 | 500 | 172.4941 | 0.1755 | 0.1193 | 0.0 | 13.1337 | 10.1489 |
114.1114 | 0.4188 | 1000 | 145.3719 | 0.4083 | 0.2799 | 0.0 | 12.0570 | 9.3769 |
126.2303 | 0.6281 | 1500 | 123.7460 | 0.5220 | 0.3660 | 0.0 | 11.1241 | 8.5576 |
104.0802 | 0.8375 | 2000 | 110.0878 | 0.5964 | 0.4219 | 0.0 | 10.4923 | 8.0832 |
92.9514 | 1.0469 | 2500 | 101.4019 | 0.6340 | 0.4530 | 0.0 | 10.0698 | 7.7131 |
89.5989 | 1.2563 | 3000 | 98.1783 | 0.6485 | 0.4649 | 0.0 | 9.9085 | 7.6020 |
76.1914 | 1.4657 | 3500 | 96.0021 | 0.6582 | 0.4736 | 0.0 | 9.7981 | 7.5160 |
81.2849 | 1.6750 | 4000 | 95.4644 | 0.6645 | 0.4783 | 0.0 | 9.7706 | 7.5254 |
75.9316 | 1.8844 | 4500 | 93.8438 | 0.6688 | 0.4828 | 0.0 | 9.6873 | 7.4340 |