sougemi_model

This model is a fine-tuned version of microsoft/layoutlmv3-base on the dataset created. It achieves the following results on the evaluation set:

  • Loss: 0.1812
  • Precision: 0.8454
  • Recall: 0.8913
  • F1: 0.8677
  • Accuracy: 0.9534

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 33.33 100 0.7803 0.8966 0.8478 0.8715 0.9663
No log 66.67 200 0.3016 0.8696 0.8696 0.8696 0.9767
No log 100.0 300 0.1623 0.9130 0.9130 0.9130 0.9819
No log 133.33 400 0.1680 0.8454 0.8913 0.8677 0.9637
0.5801 166.67 500 0.1812 0.8454 0.8913 0.8677 0.9534
0.5801 200.0 600 0.1231 0.8947 0.9239 0.9091 0.9715
0.5801 233.33 700 0.1363 0.8617 0.8804 0.8710 0.9663
0.5801 266.67 800 0.1949 0.8333 0.8696 0.8511 0.9508
0.5801 300.0 900 0.1749 0.8163 0.8696 0.8421 0.9534
0.0607 333.33 1000 0.1817 0.8163 0.8696 0.8421 0.9534

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using sxandie/doc-ai-information-extraction 1

Evaluation results