|
--- |
|
library_name: transformers |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv2-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: LayoutLMV2-Standard-Tune |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# LayoutLMV2-Standard-Tune |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.8908 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 5.2839 | 0.2212 | 50 | 4.7945 | |
|
| 4.5829 | 0.4425 | 100 | 4.1757 | |
|
| 4.1957 | 0.6637 | 150 | 4.0915 | |
|
| 3.9136 | 0.8850 | 200 | 3.7030 | |
|
| 3.4744 | 1.1062 | 250 | 3.5116 | |
|
| 3.2748 | 1.3274 | 300 | 3.1921 | |
|
| 3.067 | 1.5487 | 350 | 2.9631 | |
|
| 2.7681 | 1.7699 | 400 | 2.6921 | |
|
| 2.3719 | 1.9912 | 450 | 2.8024 | |
|
| 2.1407 | 2.2124 | 500 | 2.6848 | |
|
| 1.8237 | 2.4336 | 550 | 2.3111 | |
|
| 1.8715 | 2.6549 | 600 | 2.2330 | |
|
| 1.7399 | 2.8761 | 650 | 2.3720 | |
|
| 1.7406 | 3.0973 | 700 | 2.8147 | |
|
| 1.4482 | 3.3186 | 750 | 2.5001 | |
|
| 1.4329 | 3.5398 | 800 | 2.5033 | |
|
| 1.5602 | 3.7611 | 850 | 2.4586 | |
|
| 1.293 | 3.9823 | 900 | 2.7511 | |
|
| 1.0454 | 4.2035 | 950 | 3.0238 | |
|
| 1.0479 | 4.4248 | 1000 | 2.5079 | |
|
| 0.9167 | 4.6460 | 1050 | 2.6259 | |
|
| 0.9181 | 4.8673 | 1100 | 2.8871 | |
|
| 0.8904 | 5.0885 | 1150 | 2.4504 | |
|
| 0.7538 | 5.3097 | 1200 | 2.9350 | |
|
| 0.8497 | 5.5310 | 1250 | 3.0230 | |
|
| 0.6692 | 5.7522 | 1300 | 3.2195 | |
|
| 0.8399 | 5.9735 | 1350 | 2.9667 | |
|
| 0.5473 | 6.1947 | 1400 | 3.1973 | |
|
| 0.8275 | 6.4159 | 1450 | 3.2960 | |
|
| 0.5785 | 6.6372 | 1500 | 3.0990 | |
|
| 0.5653 | 6.8584 | 1550 | 3.3700 | |
|
| 0.5588 | 7.0796 | 1600 | 3.0558 | |
|
| 0.4161 | 7.3009 | 1650 | 3.5987 | |
|
| 0.2991 | 7.5221 | 1700 | 3.7233 | |
|
| 0.5851 | 7.7434 | 1750 | 3.5847 | |
|
| 0.4491 | 7.9646 | 1800 | 3.7572 | |
|
| 0.3945 | 8.1858 | 1850 | 3.4518 | |
|
| 0.2604 | 8.4071 | 1900 | 3.6431 | |
|
| 0.3501 | 8.6283 | 1950 | 3.6098 | |
|
| 0.3894 | 8.8496 | 2000 | 3.9602 | |
|
| 0.4027 | 9.0708 | 2050 | 3.9866 | |
|
| 0.297 | 9.2920 | 2100 | 4.1976 | |
|
| 0.4525 | 9.5133 | 2150 | 4.4386 | |
|
| 0.4868 | 9.7345 | 2200 | 3.5151 | |
|
| 0.2205 | 9.9558 | 2250 | 4.2178 | |
|
| 0.2727 | 10.1770 | 2300 | 4.1939 | |
|
| 0.161 | 10.3982 | 2350 | 4.2756 | |
|
| 0.2455 | 10.6195 | 2400 | 4.5170 | |
|
| 0.4042 | 10.8407 | 2450 | 3.9808 | |
|
| 0.1274 | 11.0619 | 2500 | 4.2683 | |
|
| 0.1188 | 11.2832 | 2550 | 4.1454 | |
|
| 0.3412 | 11.5044 | 2600 | 4.1659 | |
|
| 0.1803 | 11.7257 | 2650 | 3.9312 | |
|
| 0.1964 | 11.9469 | 2700 | 3.7040 | |
|
| 0.1959 | 12.1681 | 2750 | 3.9490 | |
|
| 0.1107 | 12.3894 | 2800 | 3.9846 | |
|
| 0.1651 | 12.6106 | 2850 | 4.0311 | |
|
| 0.2005 | 12.8319 | 2900 | 4.0973 | |
|
| 0.2648 | 13.0531 | 2950 | 4.5676 | |
|
| 0.0985 | 13.2743 | 3000 | 4.0938 | |
|
| 0.1042 | 13.4956 | 3050 | 4.1858 | |
|
| 0.1192 | 13.7168 | 3100 | 4.5617 | |
|
| 0.1114 | 13.9381 | 3150 | 4.1155 | |
|
| 0.1091 | 14.1593 | 3200 | 4.5171 | |
|
| 0.1307 | 14.3805 | 3250 | 4.7358 | |
|
| 0.1432 | 14.6018 | 3300 | 4.7484 | |
|
| 0.1439 | 14.8230 | 3350 | 4.4776 | |
|
| 0.0857 | 15.0442 | 3400 | 4.6668 | |
|
| 0.0127 | 15.2655 | 3450 | 4.7343 | |
|
| 0.0364 | 15.4867 | 3500 | 4.6299 | |
|
| 0.1207 | 15.7080 | 3550 | 4.7548 | |
|
| 0.1539 | 15.9292 | 3600 | 4.6832 | |
|
| 0.0515 | 16.1504 | 3650 | 4.8701 | |
|
| 0.0291 | 16.3717 | 3700 | 5.0909 | |
|
| 0.0385 | 16.5929 | 3750 | 4.9299 | |
|
| 0.0726 | 16.8142 | 3800 | 4.7428 | |
|
| 0.1781 | 17.0354 | 3850 | 4.8832 | |
|
| 0.0068 | 17.2566 | 3900 | 5.0250 | |
|
| 0.1302 | 17.4779 | 3950 | 4.6736 | |
|
| 0.0528 | 17.6991 | 4000 | 4.6847 | |
|
| 0.0765 | 17.9204 | 4050 | 4.5936 | |
|
| 0.071 | 18.1416 | 4100 | 4.8151 | |
|
| 0.0651 | 18.3628 | 4150 | 4.8133 | |
|
| 0.0066 | 18.5841 | 4200 | 4.8225 | |
|
| 0.0294 | 18.8053 | 4250 | 4.8895 | |
|
| 0.0808 | 19.0265 | 4300 | 4.8649 | |
|
| 0.085 | 19.2478 | 4350 | 4.8763 | |
|
| 0.0352 | 19.4690 | 4400 | 4.8788 | |
|
| 0.1208 | 19.6903 | 4450 | 4.8931 | |
|
| 0.0804 | 19.9115 | 4500 | 4.8908 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|