speech-test's picture
Upload model
1d385e3
|
raw
history blame
2.3 kB
metadata
language: en
datasets:
  - superb
tags:
  - speech
  - hubert
  - s3prl
license: apache-2.0

Hubert-Base for Emotion Recognition

S3PRL speech toolkit

Facebook's Hubert

The base model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. The classification head is trained using the Emotion Recognition part of the SUPERB dataset.

Paper

Authors: Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y. Lin, Andy T. Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, Tzu-Hsien Huang, Wei-Cheng Tseng, Ko-tik Lee, Da-Rong Liu, Zili Huang, Shuyan Dong, Shang-Wen Li, Shinji Watanabe, Abdelrahman Mohamed, Hung-yi Lee

Abstract Self-supervised learning (SSL) has proven vital for advancing research in natural language processing (NLP) and computer vision (CV). The paradigm pretrains a shared model on large volumes of unlabeled data and achieves state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the speech processing community lacks a similar setup to systematically explore the paradigm. To bridge this gap, we introduce Speech processing Universal PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the performance of a shared model across a wide range of speech processing tasks with minimal architecture changes and labeled data. Among multiple usages of the shared model, we especially focus on extracting the representation learned from SSL due to its preferable re-usability. We present a simple framework to solve SUPERB tasks by learning task-specialized lightweight prediction heads on top of the frozen shared model. Our results demonstrate that the framework is promising as SSL representations show competitive generalizability and accessibility across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a benchmark toolkit to fuel the research in representation learning and general speech processing.

The original model can be found under https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/emotion

Usage