falcon-summ / README.md
suneeln-duke's picture
End of training
631c3d5 verified
---
license: apache-2.0
base_model: Falconsai/text_summarization
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: falcon-summ
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# falcon-summ
This model is a fine-tuned version of [Falconsai/text_summarization](https://huggingface.co/Falconsai/text_summarization) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1784
- Rouge1: 0.1921
- Rouge2: 0.0958
- Rougel: 0.1642
- Rougelsum: 0.1643
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 62 | 2.6597 | 0.1336 | 0.0451 | 0.1109 | 0.1109 | 19.0 |
| No log | 2.0 | 124 | 2.5126 | 0.1519 | 0.0584 | 0.1258 | 0.1259 | 19.0 |
| No log | 3.0 | 186 | 2.4354 | 0.1702 | 0.0705 | 0.142 | 0.1422 | 19.0 |
| No log | 4.0 | 248 | 2.3855 | 0.1915 | 0.0922 | 0.1616 | 0.1618 | 19.0 |
| No log | 5.0 | 310 | 2.3499 | 0.1932 | 0.0939 | 0.1641 | 0.1644 | 19.0 |
| No log | 6.0 | 372 | 2.3251 | 0.1951 | 0.0959 | 0.1665 | 0.1667 | 19.0 |
| No log | 7.0 | 434 | 2.3035 | 0.1943 | 0.0963 | 0.1655 | 0.1656 | 19.0 |
| No log | 8.0 | 496 | 2.2879 | 0.1941 | 0.0953 | 0.1652 | 0.1653 | 19.0 |
| 2.6368 | 9.0 | 558 | 2.2695 | 0.1952 | 0.0958 | 0.1665 | 0.1667 | 19.0 |
| 2.6368 | 10.0 | 620 | 2.2588 | 0.194 | 0.0952 | 0.1651 | 0.1653 | 19.0 |
| 2.6368 | 11.0 | 682 | 2.2476 | 0.1954 | 0.0968 | 0.1668 | 0.167 | 19.0 |
| 2.6368 | 12.0 | 744 | 2.2396 | 0.1944 | 0.0965 | 0.1656 | 0.1657 | 19.0 |
| 2.6368 | 13.0 | 806 | 2.2296 | 0.1929 | 0.0963 | 0.1641 | 0.1644 | 19.0 |
| 2.6368 | 14.0 | 868 | 2.2242 | 0.1928 | 0.0969 | 0.1639 | 0.1639 | 19.0 |
| 2.6368 | 15.0 | 930 | 2.2159 | 0.1935 | 0.0971 | 0.164 | 0.1641 | 19.0 |
| 2.6368 | 16.0 | 992 | 2.2114 | 0.1924 | 0.0965 | 0.164 | 0.1641 | 19.0 |
| 2.3506 | 17.0 | 1054 | 2.2077 | 0.1926 | 0.0973 | 0.1644 | 0.1645 | 19.0 |
| 2.3506 | 18.0 | 1116 | 2.2031 | 0.1933 | 0.0968 | 0.1647 | 0.1648 | 19.0 |
| 2.3506 | 19.0 | 1178 | 2.1971 | 0.1928 | 0.0962 | 0.1643 | 0.1644 | 19.0 |
| 2.3506 | 20.0 | 1240 | 2.1956 | 0.1925 | 0.0956 | 0.165 | 0.1651 | 19.0 |
| 2.3506 | 21.0 | 1302 | 2.1903 | 0.1927 | 0.0958 | 0.1644 | 0.1644 | 19.0 |
| 2.3506 | 22.0 | 1364 | 2.1882 | 0.1933 | 0.0972 | 0.1653 | 0.1653 | 19.0 |
| 2.3506 | 23.0 | 1426 | 2.1858 | 0.1921 | 0.0956 | 0.1639 | 0.1641 | 19.0 |
| 2.3506 | 24.0 | 1488 | 2.1842 | 0.1921 | 0.0956 | 0.1642 | 0.1643 | 19.0 |
| 2.2758 | 25.0 | 1550 | 2.1832 | 0.1919 | 0.0958 | 0.1645 | 0.1647 | 19.0 |
| 2.2758 | 26.0 | 1612 | 2.1815 | 0.1922 | 0.0958 | 0.1646 | 0.1647 | 19.0 |
| 2.2758 | 27.0 | 1674 | 2.1795 | 0.1924 | 0.0962 | 0.1646 | 0.1647 | 19.0 |
| 2.2758 | 28.0 | 1736 | 2.1790 | 0.1922 | 0.0961 | 0.1646 | 0.1647 | 19.0 |
| 2.2758 | 29.0 | 1798 | 2.1784 | 0.1925 | 0.0963 | 0.1645 | 0.1646 | 19.0 |
| 2.2758 | 30.0 | 1860 | 2.1784 | 0.1921 | 0.0958 | 0.1642 | 0.1643 | 19.0 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2