Add metadata and paper link to model card

#1
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +13 -336
README.md CHANGED
@@ -1,5 +1,13 @@
 
 
 
 
 
 
1
  ![# LLaMA Factory](assets/logo.png)
2
 
 
 
3
  [![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
4
  [![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
5
  [![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
@@ -119,7 +127,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
119
 
120
  [23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).
121
 
122
- [23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#download-from-modelscope-hub) for usage.
123
 
124
  [23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `neftune_noise_alpha: 5` argument to activate NEFTune.
125
 
@@ -139,11 +147,11 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
139
 
140
  [23/07/18] We developed an **all-in-one Web UI** for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina](https://github.com/KanadeSiina) and [@codemayq](https://github.com/codemayq) for their efforts in the development.
141
 
142
- [23/07/09] We released **[FastEdit](https://github.com/hiyouga/FastEdit)** ⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested.
143
 
144
  [23/06/29] We provided a **reproducible example** of training a chat model using instruction-following datasets, see [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft) for details.
145
 
146
- [23/06/22] We aligned the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
147
 
148
  [23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). See [examples](examples/README.md) for usage.
149
 
@@ -257,19 +265,8 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
257
  - [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
258
  - [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
259
  - [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
260
- - [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
261
  - [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
262
- - [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
263
- - [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
264
- - [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de)
265
- - [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de)
266
- - [OpenSchnabeltier (de)](https://huggingface.co/datasets/mayflowergmbh/openschnabeltier_de)
267
- - [Evol Instruct (de)](https://huggingface.co/datasets/mayflowergmbh/evol-instruct_de)
268
- - [Dolphin (de)](https://huggingface.co/datasets/mayflowergmbh/dolphin_de)
269
- - [Booksum (de)](https://huggingface.co/datasets/mayflowergmbh/booksum_de)
270
- - [Airoboros (de)](https://huggingface.co/datasets/mayflowergmbh/airoboros-3.0_de)
271
- - [Ultrachat (de)](https://huggingface.co/datasets/mayflowergmbh/ultra-chat_de)
272
-
273
  </details>
274
 
275
  <details><summary>Preference datasets</summary>
@@ -322,324 +319,4 @@ huggingface-cli login
322
  | Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
323
  | LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
324
  | QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
325
- | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
326
- | QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
327
-
328
- ## Getting Started
329
-
330
- ### Installation
331
-
332
- > [!IMPORTANT]
333
- > Installation is mandatory.
334
-
335
- ```bash
336
- git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
337
- cd LLaMA-Factory
338
- pip install -e ".[torch,metrics]"
339
- ```
340
-
341
- Extra dependencies available: torch, torch-npu, metrics, deepspeed, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, badam, qwen, modelscope, quality
342
-
343
- > [!TIP]
344
- > Use `pip install --no-deps -e .` to resolve package conflicts.
345
-
346
- <details><summary>For Windows users</summary>
347
-
348
- If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you need to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
349
-
350
- ```bash
351
- pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
352
- ```
353
-
354
- To enable FlashAttention-2 on the Windows platform, you need to install the precompiled `flash-attn` library, which supports CUDA 12.1 to 12.2. Please download the corresponding version from [flash-attention](https://github.com/bdashore3/flash-attention/releases) based on your requirements.
355
-
356
- </details>
357
-
358
- <details><summary>For Ascend NPU users</summary>
359
-
360
- To install LLaMA Factory on Ascend NPU devices, please specify extra dependencies: `pip install -e ".[torch-npu,metrics]"`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
361
-
362
- ```bash
363
- # replace the url according to your CANN version and devices
364
- # install CANN Toolkit
365
- wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
366
- bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
367
-
368
- # install CANN Kernels
369
- wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
370
- bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
371
-
372
- # set env variables
373
- source /usr/local/Ascend/ascend-toolkit/set_env.sh
374
- ```
375
-
376
- | Requirement | Minimum | Recommend |
377
- | ------------ | ------- | ----------- |
378
- | CANN | 8.0.RC1 | 8.0.RC1 |
379
- | torch | 2.1.0 | 2.1.0 |
380
- | torch-npu | 2.1.0 | 2.1.0.post3 |
381
- | deepspeed | 0.13.2 | 0.13.2 |
382
-
383
- Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use.
384
-
385
- If you cannot infer model on NPU devices, try setting `do_sample: false` in the configurations.
386
-
387
- Download the pre-built Docker images: [32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
388
-
389
- </details>
390
-
391
- ### Data Preparation
392
-
393
- Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
394
-
395
- > [!NOTE]
396
- > Please update `data/dataset_info.json` to use your custom dataset.
397
-
398
- ### Quickstart
399
-
400
- Use the following 3 commands to run LoRA **fine-tuning**, **inference** and **merging** of the Llama3-8B-Instruct model, respectively.
401
-
402
- ```bash
403
- llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
404
- llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
405
- llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
406
- ```
407
-
408
- See [examples/README.md](examples/README.md) for advanced usage (including distributed training).
409
-
410
- > [!TIP]
411
- > Use `llamafactory-cli help` to show help information.
412
-
413
- ### Fine-Tuning with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
414
-
415
- ```bash
416
- llamafactory-cli webui
417
- ```
418
-
419
- ### Build Docker
420
-
421
- For CUDA users:
422
-
423
- ```bash
424
- cd docker/docker-cuda/
425
- docker-compose up -d
426
- docker-compose exec llamafactory bash
427
- ```
428
-
429
- For Ascend NPU users:
430
-
431
- ```bash
432
- cd docker/docker-npu/
433
- docker-compose up -d
434
- docker-compose exec llamafactory bash
435
- ```
436
-
437
- <details><summary>Build without Docker Compose</summary>
438
-
439
- For CUDA users:
440
-
441
- ```bash
442
- docker build -f ./docker/docker-cuda/Dockerfile \
443
- --build-arg INSTALL_BNB=false \
444
- --build-arg INSTALL_VLLM=false \
445
- --build-arg INSTALL_DEEPSPEED=false \
446
- --build-arg INSTALL_FLASHATTN=false \
447
- --build-arg PIP_INDEX=https://pypi.org/simple \
448
- -t llamafactory:latest .
449
-
450
- docker run -dit --gpus=all \
451
- -v ./hf_cache:/root/.cache/huggingface \
452
- -v ./ms_cache:/root/.cache/modelscope \
453
- -v ./data:/app/data \
454
- -v ./output:/app/output \
455
- -p 7860:7860 \
456
- -p 8000:8000 \
457
- --shm-size 16G \
458
- --name llamafactory \
459
- llamafactory:latest
460
-
461
- docker exec -it llamafactory bash
462
- ```
463
-
464
- For Ascend NPU users:
465
-
466
- ```bash
467
- # Choose docker image upon your environment
468
- docker build -f ./docker/docker-npu/Dockerfile \
469
- --build-arg INSTALL_DEEPSPEED=false \
470
- --build-arg PIP_INDEX=https://pypi.org/simple \
471
- -t llamafactory:latest .
472
-
473
- # Change `device` upon your resources
474
- docker run -dit \
475
- -v ./hf_cache:/root/.cache/huggingface \
476
- -v ./ms_cache:/root/.cache/modelscope \
477
- -v ./data:/app/data \
478
- -v ./output:/app/output \
479
- -v /usr/local/dcmi:/usr/local/dcmi \
480
- -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
481
- -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
482
- -v /etc/ascend_install.info:/etc/ascend_install.info \
483
- -p 7860:7860 \
484
- -p 8000:8000 \
485
- --device /dev/davinci0 \
486
- --device /dev/davinci_manager \
487
- --device /dev/devmm_svm \
488
- --device /dev/hisi_hdc \
489
- --shm-size 16G \
490
- --name llamafactory \
491
- llamafactory:latest
492
-
493
- docker exec -it llamafactory bash
494
- ```
495
-
496
- </details>
497
-
498
- <details><summary>Details about volume</summary>
499
-
500
- - hf_cache: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory.
501
- - data: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI.
502
- - output: Set export dir to this location so that the merged result can be accessed directly on the host machine.
503
-
504
- </details>
505
-
506
- ### Deploy with OpenAI-style API and vLLM
507
-
508
- ```bash
509
- API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
510
- ```
511
-
512
- > [!TIP]
513
- > Visit https://platform.openai.com/docs/api-reference/chat/create for API document.
514
-
515
- ### Download from ModelScope Hub
516
-
517
- If you have trouble with downloading models and datasets from Hugging Face, you can use ModelScope.
518
-
519
- ```bash
520
- export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows
521
- ```
522
-
523
- Train the model by specifying a model ID of the ModelScope Hub as the `model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`.
524
-
525
- ### Use W&B Logger
526
-
527
- To use [Weights & Biases](https://wandb.ai) for logging experimental results, you need to add the following arguments to yaml files.
528
-
529
- ```yaml
530
- report_to: wandb
531
- run_name: test_run # optional
532
- ```
533
-
534
- Set `WANDB_API_KEY` to [your key](https://wandb.ai/authorize) when launching training tasks to log in with your W&B account.
535
-
536
- ## Projects using LLaMA Factory
537
-
538
- If you have a project that should be incorporated, please contact via email or create a pull request.
539
-
540
- <details><summary>Click to show</summary>
541
-
542
- 1. Wang et al. ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation. 2023. [[arxiv]](https://arxiv.org/abs/2308.02223)
543
- 1. Yu et al. Open, Closed, or Small Language Models for Text Classification? 2023. [[arxiv]](https://arxiv.org/abs/2308.10092)
544
- 1. Wang et al. UbiPhysio: Support Daily Functioning, Fitness, and Rehabilitation with Action Understanding and Feedback in Natural Language. 2023. [[arxiv]](https://arxiv.org/abs/2308.10526)
545
- 1. Luceri et al. Leveraging Large Language Models to Detect Influence Campaigns in Social Media. 2023. [[arxiv]](https://arxiv.org/abs/2311.07816)
546
- 1. Zhang et al. Alleviating Hallucinations of Large Language Models through Induced Hallucinations. 2023. [[arxiv]](https://arxiv.org/abs/2312.15710)
547
- 1. Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. KDD 2024. [[arxiv]](https://arxiv.org/abs/2401.04319)
548
- 1. Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2401.07286)
549
- 1. Choi et al. FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2402.05904)
550
- 1. Zhang et al. AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts. 2024. [[arxiv]](https://arxiv.org/abs/2402.07625)
551
- 1. Lyu et al. KnowTuning: Knowledge-aware Fine-tuning for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11176)
552
- 1. Yang et al. LaCo: Large Language Model Pruning via Layer Collaps. 2024. [[arxiv]](https://arxiv.org/abs/2402.11187)
553
- 1. Bhardwaj et al. Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic. 2024. [[arxiv]](https://arxiv.org/abs/2402.11746)
554
- 1. Yang et al. Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11801)
555
- 1. Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2402.11809)
556
- 1. Cao et al. Head-wise Shareable Attention for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11819)
557
- 1. Zhang et al. Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages. 2024. [[arxiv]](https://arxiv.org/abs/2402.12204)
558
- 1. Kim et al. Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.14714)
559
- 1. Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. ACL 2024. [[arxiv]](https://arxiv.org/abs/2402.15043)
560
- 1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
561
- 1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
562
- 1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
563
- 1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
564
- 1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
565
- 1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
566
- 1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. COLING 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
567
- 1. Zan et al. CodeS: Natural Language to Code Repository via Multi-Layer Sketch. 2024. [[arxiv]](https://arxiv.org/abs/2403.16443)
568
- 1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
569
- 1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
570
- 1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
571
- 1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. ICML 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
572
- 1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
573
- 1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
574
- 1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
575
- 1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
576
- 1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
577
- 1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2404.17140)
578
- 1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. NAACL 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
579
- 1. Xu et al. Large Language Models for Cyber Security: A Systematic Literature Review. 2024. [[arxiv]](https://arxiv.org/abs/2405.04760)
580
- 1. Dammu et al. "They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations. 2024. [[arxiv]](https://arxiv.org/abs/2405.05378)
581
- 1. Yi et al. A safety realignment framework via subspace-oriented model fusion for large language models. 2024. [[arxiv]](https://arxiv.org/abs/2405.09055)
582
- 1. Lou et al. SPO: Multi-Dimensional Preference Sequential Alignment With Implicit Reward Modeling. 2024. [[arxiv]](https://arxiv.org/abs/2405.12739)
583
- 1. Zhang et al. Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2405.13816)
584
- 1. Zhang et al. TS-Align: A Teacher-Student Collaborative Framework for Scalable Iterative Finetuning of Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2405.20215)
585
- 1. Zihong Chen. Sentence Segmentation and Sentence Punctuation Based on XunziALLM. 2024. [[paper]](https://aclanthology.org/2024.lt4hala-1.30)
586
- 1. Gao et al. The Best of Both Worlds: Toward an Honest and Helpful Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2406.00380)
587
- 1. Wang and Song. MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset. 2024. [[arxiv]](https://arxiv.org/abs/2406.02106)
588
- 1. Hu et al. Computational Limits of Low-Rank Adaptation (LoRA) for Transformer-Based Models. 2024. [[arxiv]](https://arxiv.org/abs/2406.03136)
589
- 1. Ge et al. Time Sensitive Knowledge Editing through Efficient Finetuning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2406.04496)
590
- 1. Tan et al. Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions. 2024. [[arxiv]](https://arxiv.org/abs/2406.05688)
591
- 1. Song et al. Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters. 2024. [[arxiv]](https://arxiv.org/abs/2406.05955)
592
- 1. Gu et al. RWKV-CLIP: A Robust Vision-Language Representation Learner. 2024. [[arxiv]](https://arxiv.org/abs/2406.06973)
593
- 1. Chen et al. Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees. 2024. [[arxiv]](https://arxiv.org/abs/2406.07115)
594
- 1. Zhu et al. Are Large Language Models Good Statisticians?. 2024. [[arxiv]](https://arxiv.org/abs/2406.07815)
595
- 1. Li et al. Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning. 2024. [[arxiv]](https://arxiv.org/abs/2406.10099)
596
- 1. Ding et al. IntentionQA: A Benchmark for Evaluating Purchase Intention Comprehension Abilities of Language Models in E-commerce. 2024. [[arxiv]](https://arxiv.org/abs/2406.10173)
597
- 1. He et al. COMMUNITY-CROSS-INSTRUCT: Unsupervised Instruction Generation for Aligning Large Language Models to Online Communities. 2024. [[arxiv]](https://arxiv.org/abs/2406.12074)
598
- 1. Lin et al. FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving. 2024. [[arxiv]](https://arxiv.org/abs/2406.14408)
599
- 1. Treutlein et al. Connecting the Dots: LLMs can Infer and Verbalize Latent Structure from Disparate Training Data. 2024. [[arxiv]](https://arxiv.org/abs/2406.14546)
600
- 1. Feng et al. SS-Bench: A Benchmark for Social Story Generation and Evaluation. 2024. [[arxiv]](https://arxiv.org/abs/2406.15695)
601
- 1. Feng et al. Self-Constructed Context Decompilation with Fined-grained Alignment Enhancement. 2024. [[arxiv]](https://arxiv.org/abs/2406.17233)
602
- 1. Liu et al. Large Language Models for Cuffless Blood Pressure Measurement From Wearable Biosignals. 2024. [[arxiv]](https://arxiv.org/abs/2406.18069)
603
- 1. Iyer et al. Exploring Very Low-Resource Translation with LLMs: The University of Edinburgh’s Submission to AmericasNLP 2024 Translation Task. AmericasNLP 2024. [[paper]](https://aclanthology.org/2024.americasnlp-1.25)
604
- 1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
605
- 1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
606
- 1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
607
- 1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
608
- 1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods.
609
- 1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**: A large language model specialized in generate metadata for stable diffusion. [[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
610
- 1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**: A multimodal large language model specialized in Chinese medical domain, based on LLaVA-1.5-7B.
611
- 1. **[AutoRE](https://github.com/THUDM/AutoRE)**: A document-level relation extraction system based on large language models.
612
- 1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**: SDKs for fine-tuning LLMs on Windows PC for NVIDIA RTX.
613
- 1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**: An easy and lazy way for building multi-agent LLMs applications and supports model fine-tuning via LLaMA Factory.
614
-
615
- </details>
616
-
617
- ## License
618
-
619
- This repository is licensed under the [Apache-2.0 License](LICENSE).
620
-
621
- Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
622
-
623
- ## Citation
624
-
625
- If this work is helpful, please kindly cite as:
626
-
627
- ```bibtex
628
- @inproceedings{zheng2024llamafactory,
629
- title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
630
- author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma},
631
- booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
632
- address={Bangkok, Thailand},
633
- publisher={Association for Computational Linguistics},
634
- year={2024},
635
- url={http://arxiv.org/abs/2403.13372}
636
- }
637
- ```
638
-
639
- ## Acknowledgement
640
-
641
- This repo benefits from [PEFT](https://github.com/huggingface/peft), [TRL](https://github.com/huggingface/trl), [QLoRA](https://github.com/artidoro/qlora) and [FastChat](https://github.com/lm-sys/FastChat). Thanks for their wonderful works.
642
-
643
- ## Star History
644
-
645
- ![Star History Chart](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Factory&type=Date)
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
+ ---
6
+
7
  ![# LLaMA Factory](assets/logo.png)
8
 
9
+ This repository contains the code for fine-tuning models, as described in [Autonomous Data Selection with Language Models for Mathematical Texts](https://huggingface.co/papers/2402.07625).
10
+
11
  [![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
12
  [![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
13
  [![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
 
127
 
128
  [23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).
129
 
130
+ [23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)**. See [this tutorial](#download-from-modelscope-hub) for usage.
131
 
132
  [23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `neftune_noise_alpha: 5` argument to activate NEFTune.
133
 
 
147
 
148
  [23/07/18] We developed an **all-in-one Web UI** for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina](https://github.com/KanadeSiina) and [@codemayq](https://github.com/codemayq) for their efforts in the development.
149
 
150
+ [23/07/09] We released **[FastEdit](https://github.com/hiyouga/FastEdit)** 🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested.
151
 
152
  [23/06/29] We provided a **reproducible example** of training a chat model using instruction-following datasets, see [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft) for details.
153
 
154
+ [23/06/22] We aligned the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat/create) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
155
 
156
  [23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). See [examples](examples/README.md) for usage.
157
 
 
265
  - [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
266
  - [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
267
  - [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
 
268
  - [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
269
+ - [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
 
 
 
 
 
 
 
 
 
 
270
  </details>
271
 
272
  <details><summary>Preference datasets</summary>
 
319
  | Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
320
  | LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
321
  | QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
322
+ | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |