metadata
library_name: transformers
license: apache-2.0
base_model: cis-lmu/glot500-base
tags:
- generated_from_trainer
datasets:
- universal_dependencies
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: glot500_model_ru_taiga
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: universal_dependencies
type: universal_dependencies
config: ru_taiga
split: test
args: ru_taiga
metrics:
- name: Precision
type: precision
value: 0.8392572944297082
- name: Recall
type: recall
value: 0.8245595746898781
- name: F1
type: f1
value: 0.8318435166684194
- name: Accuracy
type: accuracy
value: 0.8491576589736098
glot500_model_ru_taiga
This model is a fine-tuned version of cis-lmu/glot500-base on the universal_dependencies dataset. It achieves the following results on the evaluation set:
- Loss: 0.6914
- Precision: 0.8393
- Recall: 0.8246
- F1: 0.8318
- Accuracy: 0.8492
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 197 | 1.0680 | 0.7495 | 0.7185 | 0.7337 | 0.7598 |
No log | 2.0 | 394 | 0.6914 | 0.8393 | 0.8246 | 0.8318 | 0.8492 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3