File size: 2,778 Bytes
73b6221
 
521f742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73b6221
 
521f742
 
73b6221
521f742
73b6221
521f742
 
 
 
 
73b6221
521f742
73b6221
521f742
73b6221
521f742
73b6221
521f742
73b6221
521f742
73b6221
521f742
73b6221
521f742
73b6221
521f742
73b6221
521f742
 
 
 
 
 
 
 
 
 
 
73b6221
521f742
73b6221
521f742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73b6221
 
521f742
73b6221
521f742
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: w2v-bert-cv-grain-lg_cv_only
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: lg
      split: test[:10%]
      args: lg
    metrics:
    - name: Wer
      type: wer
      value: 0.5799642969652421
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-cv-grain-lg_cv_only

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.5800
- Cer: 0.1379

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 0.5013        | 1.0   | 2221  | inf             | 0.2789 | 0.0724 |
| 0.299         | 2.0   | 4442  | inf             | 0.2501 | 0.0648 |
| 0.2554        | 3.0   | 6663  | inf             | 0.2435 | 0.0685 |
| 0.2411        | 4.0   | 8884  | inf             | 0.2447 | 0.0648 |
| 0.2886        | 5.0   | 11105 | inf             | 0.2506 | 0.0654 |
| 0.3923        | 6.0   | 13326 | inf             | 0.4237 | 0.1108 |
| 2.1779        | 7.0   | 15547 | inf             | 0.5612 | 0.1439 |
| 4.5629        | 8.0   | 17768 | inf             | 0.5152 | 0.1379 |
| 2.236         | 9.0   | 19989 | inf             | 0.5787 | 0.1384 |
| 2.2033        | 10.0  | 22210 | inf             | 0.5742 | 0.1375 |
| 2.2047        | 11.0  | 24431 | inf             | 0.5784 | 0.1382 |
| 2.2057        | 12.0  | 26652 | inf             | 0.5805 | 0.1390 |
| 2.2076        | 13.0  | 28873 | inf             | 0.5800 | 0.1379 |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.1