w2v-bert-cv-grain-lg_cv_only

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.5800
  • Cer: 0.1379

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.5013 1.0 2221 inf 0.2789 0.0724
0.299 2.0 4442 inf 0.2501 0.0648
0.2554 3.0 6663 inf 0.2435 0.0685
0.2411 4.0 8884 inf 0.2447 0.0648
0.2886 5.0 11105 inf 0.2506 0.0654
0.3923 6.0 13326 inf 0.4237 0.1108
2.1779 7.0 15547 inf 0.5612 0.1439
4.5629 8.0 17768 inf 0.5152 0.1379
2.236 9.0 19989 inf 0.5787 0.1384
2.2033 10.0 22210 inf 0.5742 0.1375
2.2047 11.0 24431 inf 0.5784 0.1382
2.2057 12.0 26652 inf 0.5805 0.1390
2.2076 13.0 28873 inf 0.5800 0.1379

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
1
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sulaimank/w2v-bert-cv-grain-lg_cv_only

Finetuned
(239)
this model

Evaluation results