|
--- |
|
language: |
|
- en |
|
library_name: transformers |
|
license: apache-2.0 |
|
pipeline_tag: text-generation |
|
tags: |
|
- unsloth |
|
- LoRA |
|
datasets: |
|
- TIGER-Lab/MathInstruct |
|
base_model: |
|
- Qwen/Qwen2.5-7B-Instruct |
|
--- |
|
|
|
These are the LoRA adapters for model Komodo-7B-Instruct. |
|
https://huggingface.co/suayptalha/Komodo-7B-Instruct |
|
|
|
Suggested Usage: |
|
```py |
|
model_name = "Qwen/Qwen2.5-7b-Instruct" |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.float16 |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
quantization_config=bnb_config |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
adapter_path = "suayptalha/Komodo-LoRA" |
|
model = PeftModel.from_pretrained(model, adapter_path) |
|
|
|
example_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{} |
|
|
|
### Input: |
|
{} |
|
|
|
### Response: |
|
{}""" |
|
|
|
inputs = tokenizer( |
|
[ |
|
example_prompt.format( |
|
"", #Your question here |
|
"", #Given input here |
|
"", #Output (for training) |
|
) |
|
], return_tensors = "pt").to("cuda") |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True) |
|
tokenizer.batch_decode(outputs) |
|
``` |