XLM-RoBERTa-PRETRAINED4-CERED3
This model is a fine-tuned version of stulcrad/XLM-RoBERTa-CERED4 on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.7902
- Accuracy: 0.8457
- Micro Precision: 0.8457
- Micro Recall: 0.8457
- Micro F1: 0.8457
- Macro Precision: 0.8361
- Macro Recall: 0.8180
- Macro F1: 0.8201
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 |
---|---|---|---|---|---|---|---|---|---|---|
0.7169 | 1.0 | 4758 | 0.6245 | 0.8018 | 0.8018 | 0.8018 | 0.8018 | 0.7553 | 0.7566 | 0.7343 |
0.5227 | 2.0 | 9516 | 0.5642 | 0.8329 | 0.8329 | 0.8329 | 0.8329 | 0.8164 | 0.7763 | 0.7790 |
0.3921 | 3.0 | 14274 | 0.5481 | 0.8452 | 0.8452 | 0.8452 | 0.8452 | 0.8240 | 0.7899 | 0.7933 |
0.2902 | 4.0 | 19032 | 0.6658 | 0.8298 | 0.8298 | 0.8298 | 0.8298 | 0.8192 | 0.8003 | 0.7995 |
0.2068 | 5.0 | 23790 | 0.6480 | 0.8438 | 0.8438 | 0.8438 | 0.8438 | 0.8307 | 0.8070 | 0.8077 |
0.1505 | 6.0 | 28548 | 0.7309 | 0.8469 | 0.8469 | 0.8469 | 0.8469 | 0.8149 | 0.8168 | 0.8081 |
0.102 | 7.0 | 33306 | 0.7756 | 0.8506 | 0.8506 | 0.8506 | 0.8506 | 0.8169 | 0.8218 | 0.8131 |
0.0804 | 8.0 | 38064 | 0.8351 | 0.8455 | 0.8455 | 0.8455 | 0.8455 | 0.8104 | 0.8180 | 0.8063 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.