Robeczech-PRETRAINED4-CERED3
This model is a fine-tuned version of stulcrad/Robeczech-CERED4 on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 1.6382
- Accuracy: 0.8005
- Micro Precision: 0.8005
- Micro Recall: 0.8005
- Micro F1: 0.8005
- Macro Precision: 0.8012
- Macro Recall: 0.7777
- Macro F1: 0.7832
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 |
---|---|---|---|---|---|---|---|---|---|---|
0.844 | 1.0 | 6344 | 0.8429 | 0.7582 | 0.7582 | 0.7582 | 0.7582 | 0.6873 | 0.6811 | 0.6550 |
0.6968 | 2.0 | 12688 | 0.7369 | 0.7892 | 0.7892 | 0.7892 | 0.7892 | 0.7628 | 0.7249 | 0.7267 |
0.5786 | 3.0 | 19032 | 0.7460 | 0.7937 | 0.7937 | 0.7937 | 0.7937 | 0.8185 | 0.7165 | 0.7327 |
0.4567 | 4.0 | 25376 | 0.8182 | 0.7872 | 0.7872 | 0.7872 | 0.7872 | 0.7849 | 0.7261 | 0.7378 |
0.3967 | 5.0 | 31720 | 0.8175 | 0.7906 | 0.7906 | 0.7906 | 0.7906 | 0.7810 | 0.7440 | 0.7443 |
0.3121 | 6.0 | 38064 | 0.8029 | 0.8073 | 0.8073 | 0.8073 | 0.8073 | 0.7873 | 0.7551 | 0.7604 |
0.2516 | 7.0 | 44408 | 0.8831 | 0.7988 | 0.7988 | 0.7988 | 0.7988 | 0.7755 | 0.7632 | 0.7524 |
0.1894 | 8.0 | 50752 | 1.0534 | 0.8012 | 0.8012 | 0.8012 | 0.8012 | 0.7756 | 0.7627 | 0.7576 |
0.1483 | 9.0 | 57096 | 1.1912 | 0.8035 | 0.8035 | 0.8035 | 0.8035 | 0.7941 | 0.7578 | 0.7570 |
0.1106 | 10.0 | 63440 | 1.3780 | 0.8128 | 0.8128 | 0.8128 | 0.8128 | 0.7656 | 0.7594 | 0.7504 |
0.0942 | 11.0 | 69784 | 1.4557 | 0.8189 | 0.8189 | 0.8189 | 0.8189 | 0.7780 | 0.7848 | 0.7747 |
0.0577 | 12.0 | 76128 | 1.6582 | 0.8090 | 0.8090 | 0.8090 | 0.8090 | 0.7668 | 0.7732 | 0.7599 |
0.0349 | 13.0 | 82472 | 1.7875 | 0.8138 | 0.8138 | 0.8138 | 0.8138 | 0.7754 | 0.7688 | 0.7627 |
0.0143 | 14.0 | 88816 | 1.8337 | 0.8131 | 0.8131 | 0.8131 | 0.8131 | 0.7706 | 0.7707 | 0.7597 |
0.0085 | 15.0 | 95160 | 1.8645 | 0.8189 | 0.8189 | 0.8189 | 0.8189 | 0.7789 | 0.7795 | 0.7695 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.