metadata
base_model: DeepPavlov/bert-base-bg-cs-pl-ru-cased
tags:
- generated_from_trainer
datasets:
- cnec
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CNEC_1_1_ext_slavicbert
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cnec
type: cnec
config: default
split: validation
args: default
metrics:
- name: Precision
type: precision
value: 0.8606811145510835
- name: Recall
type: recall
value: 0.8915018706574025
- name: F1
type: f1
value: 0.8758204253084799
- name: Accuracy
type: accuracy
value: 0.9626885008032336
CNEC_1_1_ext_slavicbert
This model is a fine-tuned version of DeepPavlov/bert-base-bg-cs-pl-ru-cased on the cnec dataset. It achieves the following results on the evaluation set:
- Loss: 0.2572
- Precision: 0.8607
- Recall: 0.8915
- F1: 0.8758
- Accuracy: 0.9627
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3946 | 1.72 | 500 | 0.1925 | 0.7835 | 0.8471 | 0.8141 | 0.9467 |
0.1653 | 3.44 | 1000 | 0.1627 | 0.8340 | 0.8675 | 0.8504 | 0.9572 |
0.1183 | 5.15 | 1500 | 0.1700 | 0.8378 | 0.8808 | 0.8588 | 0.9595 |
0.0869 | 6.87 | 2000 | 0.1901 | 0.8554 | 0.8728 | 0.8640 | 0.9589 |
0.0661 | 8.59 | 2500 | 0.2037 | 0.8482 | 0.8867 | 0.8670 | 0.9595 |
0.053 | 10.31 | 3000 | 0.2011 | 0.8460 | 0.8867 | 0.8659 | 0.9609 |
0.043 | 12.03 | 3500 | 0.2216 | 0.8555 | 0.8888 | 0.8718 | 0.9593 |
0.0358 | 13.75 | 4000 | 0.2245 | 0.8492 | 0.8878 | 0.8680 | 0.9603 |
0.0296 | 15.46 | 4500 | 0.2401 | 0.8513 | 0.8872 | 0.8689 | 0.9603 |
0.0264 | 17.18 | 5000 | 0.2415 | 0.8564 | 0.8862 | 0.8710 | 0.9610 |
0.0212 | 18.9 | 5500 | 0.2570 | 0.8557 | 0.8872 | 0.8712 | 0.9622 |
0.0205 | 20.62 | 6000 | 0.2540 | 0.8567 | 0.8883 | 0.8722 | 0.9616 |
0.0167 | 22.34 | 6500 | 0.2573 | 0.8568 | 0.8894 | 0.8728 | 0.9614 |
0.0161 | 24.05 | 7000 | 0.2572 | 0.8607 | 0.8915 | 0.8758 | 0.9627 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0