dpo3

This model is a fine-tuned version of deepseek-ai/deepseek-coder-1.3b-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Rewards/chosen: nan
  • Rewards/rejected: nan
  • Rewards/accuracies: 0.0015
  • Rewards/margins: nan
  • Logps/rejected: nan
  • Logps/chosen: nan
  • Logits/rejected: nan
  • Logits/chosen: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 7
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
13488810.24 2.3088 100 nan nan nan 0.0015 nan nan nan nan nan
0.0 4.6176 200 nan nan nan 0.0015 nan nan nan nan nan
0.0 6.9264 300 nan nan nan 0.0015 nan nan nan nan nan

Framework versions

  • Transformers 4.45.0
  • Pytorch 2.5.1+cu124
  • Datasets 2.19.2
  • Tokenizers 0.20.3
Downloads last month
8
Safetensors
Model size
1.35B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for stojchet/dpo3

Finetuned
(129)
this model
Finetunes
1 model