|
--- |
|
library_name: transformers |
|
license: mit |
|
language: |
|
- ja |
|
- en |
|
--- |
|
|
|
# stockmark/stockmark-100b-instruct-v0.1 |
|
|
|
Stockmark-100b-instruct-v0.1 is an instruction tuned version of [stockmark-100b](https://huggingface.co/stockmark/stockmark-100b), a 100 billion parameter LLM developed by [Stockmark Inc.](https://stockmark.co.jp/) |
|
|
|
## How to use |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("stockmark/stockmark-100b") |
|
model = AutoModelForCausalLM.from_pretrained("stockmark/stockmark-100b", device_map="auto", torch_dtype=torch.bfloat16) |
|
|
|
input_ids = tokenizer("生成AIとは?", return_tensors="pt").input_ids.to(model.device) |
|
with torch.inference_mode(): |
|
tokens = model.generate( |
|
input_ids, |
|
max_new_tokens = 256, |
|
do_sample = True, |
|
temperature = 0.7, |
|
top_p = 0.95, |
|
repetition_penalty = 1.08 |
|
) |
|
|
|
output = tokenizer.decode(tokens[0], skip_special_tokens=True) |
|
print(output) |
|
``` |
|
|
|
## Dataset (fine-tuning) |
|
- Ichikara instruction [[Web Page](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF-%E5%85%AC%E9%96%8B/)], [[Ppaer](https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/A6-3.pdf)] |
|
|
|
## License |
|
[MIT](https://opensource.org/licenses/MIT) |
|
|
|
## Developed by |
|
[Stockmark Inc.](https://stockmark.co.jp/) |