|
--- |
|
library_name: transformers |
|
license: mit |
|
language: |
|
- ja |
|
- en |
|
--- |
|
|
|
# stockmark/stockmark-100b-instruct-v0.1 |
|
|
|
Stockmark-100b-instruct-v0.1 is an instruction tuned version of [stockmark-100b](https://huggingface.co/stockmark/stockmark-100b), a 100 billion parameter LLM developed by [Stockmark Inc.](https://stockmark.co.jp/) |
|
|
|
## How to use |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer |
|
from peft improt AutoPeftModelForCausalLM |
|
|
|
prompt_template = """### 指示: |
|
{instruction} |
|
|
|
### 応答: |
|
""" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("stockmark/stockmark-100b-instruct-v0.1") |
|
model = AutoPeftModelForCausalLM.from_pretrained("stockmark/stockmark-100b-instruct-v0.1", device_map="auto", torch_dtype=torch.bfloat16) |
|
|
|
instruction = "生成AIとは?" |
|
prompt = prompt_template.format(instruction=instruction) |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) |
|
with torch.inference_mode(): |
|
tokens = model.generate( |
|
input_ids, |
|
max_new_tokens = 256, |
|
do_sample = True, |
|
temperature = 0.7, |
|
top_p = 0.95, |
|
repetition_penalty = 1.08 |
|
) |
|
|
|
output = tokenizer.decode(tokens[0], skip_special_tokens=True) |
|
print(output) |
|
``` |
|
|
|
## Dataset (fine-tuning) |
|
- Ichikara instruction [[Web Page](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF-%E5%85%AC%E9%96%8B/)], [[Ppaer](https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/A6-3.pdf)] |
|
|
|
## Performance |
|
|
|
**Stockmark Business Questions** |
|
|
|
Dataset: https://huggingface.co/datasets/stockmark/business-questions |
|
|
|
| model | accuracy | |
|
|:---:|:---:| |
|
|stockmark-100b-instruct| 0.90 | |
|
|stockmark-13b-instruct| 0.80 | |
|
|GPT-3.5-turbo[^1]| 0.42 | |
|
|
|
[^1]: 0613 |
|
|
|
**Japanese Vicuna QA Benchmark** |
|
|
|
We excluded categories that require calculation and coding, and use remaining 60 questions for evaluation. |
|
|
|
GitHub: https://github.com/ku-nlp/ja-vicuna-qa-benchmark |
|
|
|
| model | average score | |
|
|:---:|:---:| |
|
|stockmark-100b-instruct| 5.97 | |
|
|tokyotech-llm/Swallow-70b-instruct-hf| 5.59 | |
|
|GPT-3.5 (text-davinci-003)| 5.08 | |
|
|
|
**Inference speed** |
|
|
|
| model | time [s] for genrating 100 characters in Japanese | |
|
|:---:|:---:| |
|
|stockmark-100b-instruct| 1.86 | |
|
| gpt-3.5-turbo | 2.15 | |
|
| gpt-4-turbo | 5.48 | |
|
|tokyotech-llm/Swallow-70b-instruct-hf| 2.22 | |
|
|
|
For local LLMs, we measured the inference time using AWS Inferentia2. |
|
|
|
## License |
|
[MIT](https://opensource.org/licenses/MIT) |
|
|
|
## Developed by |
|
[Stockmark Inc.](https://stockmark.co.jp/) |