stepanom's picture
Update README.md
6108caa verified
|
raw
history blame
2.18 kB
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: XLMRoberta-base-amazon-massive-Intent
    results: []
widget:
  - text: staubsauge den flur
datasets:
  - AmazonScience/massive
language:
  - en
  - ru

XLMRoberta-base-amazon-massive-Intent

This model is a fine-tuned version of xlm-roberta-base on the MASSIVE dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5620
  • Accuracy: 0.8751
  • F1: 0.8269

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.4641 1.0 1440 1.4258 0.6709 0.4126
1.1447 2.0 2880 0.8477 0.8060 0.6318
0.7437 3.0 4320 0.6688 0.8409 0.7060
0.5543 4.0 5760 0.6006 0.8601 0.7813
0.4375 5.0 7200 0.5780 0.8635 0.7937
0.3763 6.0 8640 0.5748 0.8694 0.8170
0.3265 7.0 10080 0.5620 0.8751 0.8269
0.2916 8.0 11520 0.5701 0.8756 0.8260
0.2628 9.0 12960 0.5728 0.8760 0.8271
0.2474 10.0 14400 0.5740 0.8770 0.8288

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1