File size: 24,229 Bytes
8cc7f3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
2023-10-18 20:40:46,083 ----------------------------------------------------------------------------------------------------
2023-10-18 20:40:46,083 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 20:40:46,083 ----------------------------------------------------------------------------------------------------
2023-10-18 20:40:46,083 MultiCorpus: 7936 train + 992 dev + 992 test sentences
 - NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
2023-10-18 20:40:46,083 ----------------------------------------------------------------------------------------------------
2023-10-18 20:40:46,083 Train:  7936 sentences
2023-10-18 20:40:46,083         (train_with_dev=False, train_with_test=False)
2023-10-18 20:40:46,083 ----------------------------------------------------------------------------------------------------
2023-10-18 20:40:46,083 Training Params:
2023-10-18 20:40:46,083  - learning_rate: "3e-05" 
2023-10-18 20:40:46,084  - mini_batch_size: "4"
2023-10-18 20:40:46,084  - max_epochs: "10"
2023-10-18 20:40:46,084  - shuffle: "True"
2023-10-18 20:40:46,084 ----------------------------------------------------------------------------------------------------
2023-10-18 20:40:46,084 Plugins:
2023-10-18 20:40:46,084  - TensorboardLogger
2023-10-18 20:40:46,084  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 20:40:46,084 ----------------------------------------------------------------------------------------------------
2023-10-18 20:40:46,084 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 20:40:46,084  - metric: "('micro avg', 'f1-score')"
2023-10-18 20:40:46,084 ----------------------------------------------------------------------------------------------------
2023-10-18 20:40:46,084 Computation:
2023-10-18 20:40:46,084  - compute on device: cuda:0
2023-10-18 20:40:46,084  - embedding storage: none
2023-10-18 20:40:46,084 ----------------------------------------------------------------------------------------------------
2023-10-18 20:40:46,084 Model training base path: "hmbench-icdar/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-18 20:40:46,084 ----------------------------------------------------------------------------------------------------
2023-10-18 20:40:46,084 ----------------------------------------------------------------------------------------------------
2023-10-18 20:40:46,084 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 20:40:49,484 epoch 1 - iter 198/1984 - loss 2.40181665 - time (sec): 3.40 - samples/sec: 4847.36 - lr: 0.000003 - momentum: 0.000000
2023-10-18 20:40:52,929 epoch 1 - iter 396/1984 - loss 2.06051017 - time (sec): 6.85 - samples/sec: 4779.10 - lr: 0.000006 - momentum: 0.000000
2023-10-18 20:40:56,097 epoch 1 - iter 594/1984 - loss 1.65005864 - time (sec): 10.01 - samples/sec: 4974.57 - lr: 0.000009 - momentum: 0.000000
2023-10-18 20:40:59,185 epoch 1 - iter 792/1984 - loss 1.36396891 - time (sec): 13.10 - samples/sec: 5050.84 - lr: 0.000012 - momentum: 0.000000
2023-10-18 20:41:02,224 epoch 1 - iter 990/1984 - loss 1.19110595 - time (sec): 16.14 - samples/sec: 5155.96 - lr: 0.000015 - momentum: 0.000000
2023-10-18 20:41:05,316 epoch 1 - iter 1188/1984 - loss 1.06964597 - time (sec): 19.23 - samples/sec: 5168.26 - lr: 0.000018 - momentum: 0.000000
2023-10-18 20:41:08,345 epoch 1 - iter 1386/1984 - loss 0.97250875 - time (sec): 22.26 - samples/sec: 5200.44 - lr: 0.000021 - momentum: 0.000000
2023-10-18 20:41:11,364 epoch 1 - iter 1584/1984 - loss 0.89537197 - time (sec): 25.28 - samples/sec: 5207.18 - lr: 0.000024 - momentum: 0.000000
2023-10-18 20:41:14,412 epoch 1 - iter 1782/1984 - loss 0.83846567 - time (sec): 28.33 - samples/sec: 5199.51 - lr: 0.000027 - momentum: 0.000000
2023-10-18 20:41:17,456 epoch 1 - iter 1980/1984 - loss 0.79010219 - time (sec): 31.37 - samples/sec: 5217.57 - lr: 0.000030 - momentum: 0.000000
2023-10-18 20:41:17,514 ----------------------------------------------------------------------------------------------------
2023-10-18 20:41:17,514 EPOCH 1 done: loss 0.7888 - lr: 0.000030
2023-10-18 20:41:19,039 DEV : loss 0.22708812355995178 - f1-score (micro avg)  0.2642
2023-10-18 20:41:19,058 saving best model
2023-10-18 20:41:19,093 ----------------------------------------------------------------------------------------------------
2023-10-18 20:41:22,126 epoch 2 - iter 198/1984 - loss 0.32835931 - time (sec): 3.03 - samples/sec: 5320.46 - lr: 0.000030 - momentum: 0.000000
2023-10-18 20:41:25,167 epoch 2 - iter 396/1984 - loss 0.29962721 - time (sec): 6.07 - samples/sec: 5482.59 - lr: 0.000029 - momentum: 0.000000
2023-10-18 20:41:28,151 epoch 2 - iter 594/1984 - loss 0.29692658 - time (sec): 9.06 - samples/sec: 5412.42 - lr: 0.000029 - momentum: 0.000000
2023-10-18 20:41:31,207 epoch 2 - iter 792/1984 - loss 0.29657996 - time (sec): 12.11 - samples/sec: 5383.77 - lr: 0.000029 - momentum: 0.000000
2023-10-18 20:41:34,225 epoch 2 - iter 990/1984 - loss 0.28962444 - time (sec): 15.13 - samples/sec: 5372.89 - lr: 0.000028 - momentum: 0.000000
2023-10-18 20:41:37,219 epoch 2 - iter 1188/1984 - loss 0.28843578 - time (sec): 18.13 - samples/sec: 5362.62 - lr: 0.000028 - momentum: 0.000000
2023-10-18 20:41:40,292 epoch 2 - iter 1386/1984 - loss 0.29008589 - time (sec): 21.20 - samples/sec: 5333.12 - lr: 0.000028 - momentum: 0.000000
2023-10-18 20:41:43,095 epoch 2 - iter 1584/1984 - loss 0.28766926 - time (sec): 24.00 - samples/sec: 5415.25 - lr: 0.000027 - momentum: 0.000000
2023-10-18 20:41:46,153 epoch 2 - iter 1782/1984 - loss 0.28669108 - time (sec): 27.06 - samples/sec: 5436.91 - lr: 0.000027 - momentum: 0.000000
2023-10-18 20:41:49,222 epoch 2 - iter 1980/1984 - loss 0.28366818 - time (sec): 30.13 - samples/sec: 5432.08 - lr: 0.000027 - momentum: 0.000000
2023-10-18 20:41:49,279 ----------------------------------------------------------------------------------------------------
2023-10-18 20:41:49,279 EPOCH 2 done: loss 0.2838 - lr: 0.000027
2023-10-18 20:41:51,481 DEV : loss 0.19872356951236725 - f1-score (micro avg)  0.3621
2023-10-18 20:41:51,500 saving best model
2023-10-18 20:41:51,532 ----------------------------------------------------------------------------------------------------
2023-10-18 20:41:54,500 epoch 3 - iter 198/1984 - loss 0.24485053 - time (sec): 2.97 - samples/sec: 5641.36 - lr: 0.000026 - momentum: 0.000000
2023-10-18 20:41:57,549 epoch 3 - iter 396/1984 - loss 0.25674337 - time (sec): 6.02 - samples/sec: 5432.56 - lr: 0.000026 - momentum: 0.000000
2023-10-18 20:42:00,576 epoch 3 - iter 594/1984 - loss 0.25987147 - time (sec): 9.04 - samples/sec: 5408.81 - lr: 0.000026 - momentum: 0.000000
2023-10-18 20:42:03,632 epoch 3 - iter 792/1984 - loss 0.25653396 - time (sec): 12.10 - samples/sec: 5357.86 - lr: 0.000025 - momentum: 0.000000
2023-10-18 20:42:06,666 epoch 3 - iter 990/1984 - loss 0.24885921 - time (sec): 15.13 - samples/sec: 5396.16 - lr: 0.000025 - momentum: 0.000000
2023-10-18 20:42:09,707 epoch 3 - iter 1188/1984 - loss 0.25191638 - time (sec): 18.17 - samples/sec: 5341.92 - lr: 0.000025 - momentum: 0.000000
2023-10-18 20:42:12,610 epoch 3 - iter 1386/1984 - loss 0.25739981 - time (sec): 21.08 - samples/sec: 5388.28 - lr: 0.000024 - momentum: 0.000000
2023-10-18 20:42:15,681 epoch 3 - iter 1584/1984 - loss 0.25300334 - time (sec): 24.15 - samples/sec: 5398.44 - lr: 0.000024 - momentum: 0.000000
2023-10-18 20:42:18,737 epoch 3 - iter 1782/1984 - loss 0.24809037 - time (sec): 27.20 - samples/sec: 5403.39 - lr: 0.000024 - momentum: 0.000000
2023-10-18 20:42:21,795 epoch 3 - iter 1980/1984 - loss 0.24646940 - time (sec): 30.26 - samples/sec: 5404.26 - lr: 0.000023 - momentum: 0.000000
2023-10-18 20:42:21,867 ----------------------------------------------------------------------------------------------------
2023-10-18 20:42:21,867 EPOCH 3 done: loss 0.2463 - lr: 0.000023
2023-10-18 20:42:23,662 DEV : loss 0.18124178051948547 - f1-score (micro avg)  0.3771
2023-10-18 20:42:23,680 saving best model
2023-10-18 20:42:23,714 ----------------------------------------------------------------------------------------------------
2023-10-18 20:42:26,738 epoch 4 - iter 198/1984 - loss 0.23822861 - time (sec): 3.02 - samples/sec: 5210.29 - lr: 0.000023 - momentum: 0.000000
2023-10-18 20:42:29,815 epoch 4 - iter 396/1984 - loss 0.23209028 - time (sec): 6.10 - samples/sec: 5352.30 - lr: 0.000023 - momentum: 0.000000
2023-10-18 20:42:32,825 epoch 4 - iter 594/1984 - loss 0.22861673 - time (sec): 9.11 - samples/sec: 5254.98 - lr: 0.000022 - momentum: 0.000000
2023-10-18 20:42:35,855 epoch 4 - iter 792/1984 - loss 0.22608576 - time (sec): 12.14 - samples/sec: 5233.89 - lr: 0.000022 - momentum: 0.000000
2023-10-18 20:42:38,904 epoch 4 - iter 990/1984 - loss 0.22959492 - time (sec): 15.19 - samples/sec: 5306.19 - lr: 0.000022 - momentum: 0.000000
2023-10-18 20:42:41,627 epoch 4 - iter 1188/1984 - loss 0.22608383 - time (sec): 17.91 - samples/sec: 5413.99 - lr: 0.000021 - momentum: 0.000000
2023-10-18 20:42:44,722 epoch 4 - iter 1386/1984 - loss 0.22511283 - time (sec): 21.01 - samples/sec: 5393.16 - lr: 0.000021 - momentum: 0.000000
2023-10-18 20:42:47,953 epoch 4 - iter 1584/1984 - loss 0.22675445 - time (sec): 24.24 - samples/sec: 5359.52 - lr: 0.000021 - momentum: 0.000000
2023-10-18 20:42:51,209 epoch 4 - iter 1782/1984 - loss 0.22351402 - time (sec): 27.49 - samples/sec: 5338.20 - lr: 0.000020 - momentum: 0.000000
2023-10-18 20:42:54,429 epoch 4 - iter 1980/1984 - loss 0.22289582 - time (sec): 30.71 - samples/sec: 5326.93 - lr: 0.000020 - momentum: 0.000000
2023-10-18 20:42:54,494 ----------------------------------------------------------------------------------------------------
2023-10-18 20:42:54,494 EPOCH 4 done: loss 0.2227 - lr: 0.000020
2023-10-18 20:42:56,316 DEV : loss 0.1685991734266281 - f1-score (micro avg)  0.4076
2023-10-18 20:42:56,334 saving best model
2023-10-18 20:42:56,368 ----------------------------------------------------------------------------------------------------
2023-10-18 20:42:59,420 epoch 5 - iter 198/1984 - loss 0.18916448 - time (sec): 3.05 - samples/sec: 5486.17 - lr: 0.000020 - momentum: 0.000000
2023-10-18 20:43:02,418 epoch 5 - iter 396/1984 - loss 0.19556003 - time (sec): 6.05 - samples/sec: 5364.05 - lr: 0.000019 - momentum: 0.000000
2023-10-18 20:43:05,400 epoch 5 - iter 594/1984 - loss 0.19887775 - time (sec): 9.03 - samples/sec: 5281.04 - lr: 0.000019 - momentum: 0.000000
2023-10-18 20:43:08,412 epoch 5 - iter 792/1984 - loss 0.19819805 - time (sec): 12.04 - samples/sec: 5354.70 - lr: 0.000019 - momentum: 0.000000
2023-10-18 20:43:11,457 epoch 5 - iter 990/1984 - loss 0.20054697 - time (sec): 15.09 - samples/sec: 5333.89 - lr: 0.000018 - momentum: 0.000000
2023-10-18 20:43:14,512 epoch 5 - iter 1188/1984 - loss 0.20228121 - time (sec): 18.14 - samples/sec: 5324.58 - lr: 0.000018 - momentum: 0.000000
2023-10-18 20:43:17,524 epoch 5 - iter 1386/1984 - loss 0.20335431 - time (sec): 21.15 - samples/sec: 5352.50 - lr: 0.000018 - momentum: 0.000000
2023-10-18 20:43:20,519 epoch 5 - iter 1584/1984 - loss 0.20160468 - time (sec): 24.15 - samples/sec: 5381.60 - lr: 0.000017 - momentum: 0.000000
2023-10-18 20:43:23,580 epoch 5 - iter 1782/1984 - loss 0.20444659 - time (sec): 27.21 - samples/sec: 5400.66 - lr: 0.000017 - momentum: 0.000000
2023-10-18 20:43:26,633 epoch 5 - iter 1980/1984 - loss 0.20797252 - time (sec): 30.26 - samples/sec: 5405.93 - lr: 0.000017 - momentum: 0.000000
2023-10-18 20:43:26,699 ----------------------------------------------------------------------------------------------------
2023-10-18 20:43:26,699 EPOCH 5 done: loss 0.2080 - lr: 0.000017
2023-10-18 20:43:28,526 DEV : loss 0.16076675057411194 - f1-score (micro avg)  0.4272
2023-10-18 20:43:28,544 saving best model
2023-10-18 20:43:28,580 ----------------------------------------------------------------------------------------------------
2023-10-18 20:43:31,611 epoch 6 - iter 198/1984 - loss 0.18626775 - time (sec): 3.03 - samples/sec: 5385.04 - lr: 0.000016 - momentum: 0.000000
2023-10-18 20:43:34,762 epoch 6 - iter 396/1984 - loss 0.18358758 - time (sec): 6.18 - samples/sec: 5174.46 - lr: 0.000016 - momentum: 0.000000
2023-10-18 20:43:37,867 epoch 6 - iter 594/1984 - loss 0.18721054 - time (sec): 9.29 - samples/sec: 5277.32 - lr: 0.000016 - momentum: 0.000000
2023-10-18 20:43:40,881 epoch 6 - iter 792/1984 - loss 0.18658538 - time (sec): 12.30 - samples/sec: 5288.77 - lr: 0.000015 - momentum: 0.000000
2023-10-18 20:43:43,940 epoch 6 - iter 990/1984 - loss 0.18950152 - time (sec): 15.36 - samples/sec: 5274.00 - lr: 0.000015 - momentum: 0.000000
2023-10-18 20:43:46,978 epoch 6 - iter 1188/1984 - loss 0.18810016 - time (sec): 18.40 - samples/sec: 5298.65 - lr: 0.000015 - momentum: 0.000000
2023-10-18 20:43:49,811 epoch 6 - iter 1386/1984 - loss 0.19049194 - time (sec): 21.23 - samples/sec: 5340.47 - lr: 0.000014 - momentum: 0.000000
2023-10-18 20:43:52,777 epoch 6 - iter 1584/1984 - loss 0.19125360 - time (sec): 24.20 - samples/sec: 5349.24 - lr: 0.000014 - momentum: 0.000000
2023-10-18 20:43:55,574 epoch 6 - iter 1782/1984 - loss 0.19255913 - time (sec): 26.99 - samples/sec: 5394.96 - lr: 0.000014 - momentum: 0.000000
2023-10-18 20:43:58,643 epoch 6 - iter 1980/1984 - loss 0.19515696 - time (sec): 30.06 - samples/sec: 5444.12 - lr: 0.000013 - momentum: 0.000000
2023-10-18 20:43:58,710 ----------------------------------------------------------------------------------------------------
2023-10-18 20:43:58,710 EPOCH 6 done: loss 0.1950 - lr: 0.000013
2023-10-18 20:44:00,528 DEV : loss 0.1576894223690033 - f1-score (micro avg)  0.4482
2023-10-18 20:44:00,546 saving best model
2023-10-18 20:44:00,581 ----------------------------------------------------------------------------------------------------
2023-10-18 20:44:03,606 epoch 7 - iter 198/1984 - loss 0.20041330 - time (sec): 3.02 - samples/sec: 5330.01 - lr: 0.000013 - momentum: 0.000000
2023-10-18 20:44:06,304 epoch 7 - iter 396/1984 - loss 0.19185999 - time (sec): 5.72 - samples/sec: 5607.62 - lr: 0.000013 - momentum: 0.000000
2023-10-18 20:44:09,246 epoch 7 - iter 594/1984 - loss 0.19074333 - time (sec): 8.66 - samples/sec: 5651.53 - lr: 0.000012 - momentum: 0.000000
2023-10-18 20:44:12,277 epoch 7 - iter 792/1984 - loss 0.19616294 - time (sec): 11.70 - samples/sec: 5593.71 - lr: 0.000012 - momentum: 0.000000
2023-10-18 20:44:15,367 epoch 7 - iter 990/1984 - loss 0.19168219 - time (sec): 14.79 - samples/sec: 5536.96 - lr: 0.000012 - momentum: 0.000000
2023-10-18 20:44:18,405 epoch 7 - iter 1188/1984 - loss 0.18962249 - time (sec): 17.82 - samples/sec: 5504.98 - lr: 0.000011 - momentum: 0.000000
2023-10-18 20:44:21,422 epoch 7 - iter 1386/1984 - loss 0.18950612 - time (sec): 20.84 - samples/sec: 5474.31 - lr: 0.000011 - momentum: 0.000000
2023-10-18 20:44:24,452 epoch 7 - iter 1584/1984 - loss 0.18837304 - time (sec): 23.87 - samples/sec: 5449.01 - lr: 0.000011 - momentum: 0.000000
2023-10-18 20:44:27,644 epoch 7 - iter 1782/1984 - loss 0.18498108 - time (sec): 27.06 - samples/sec: 5459.72 - lr: 0.000010 - momentum: 0.000000
2023-10-18 20:44:30,700 epoch 7 - iter 1980/1984 - loss 0.18632929 - time (sec): 30.12 - samples/sec: 5433.74 - lr: 0.000010 - momentum: 0.000000
2023-10-18 20:44:30,761 ----------------------------------------------------------------------------------------------------
2023-10-18 20:44:30,761 EPOCH 7 done: loss 0.1860 - lr: 0.000010
2023-10-18 20:44:32,576 DEV : loss 0.158553346991539 - f1-score (micro avg)  0.4563
2023-10-18 20:44:32,594 saving best model
2023-10-18 20:44:32,627 ----------------------------------------------------------------------------------------------------
2023-10-18 20:44:35,383 epoch 8 - iter 198/1984 - loss 0.18600477 - time (sec): 2.75 - samples/sec: 6073.68 - lr: 0.000010 - momentum: 0.000000
2023-10-18 20:44:38,367 epoch 8 - iter 396/1984 - loss 0.17748589 - time (sec): 5.74 - samples/sec: 5766.31 - lr: 0.000009 - momentum: 0.000000
2023-10-18 20:44:41,403 epoch 8 - iter 594/1984 - loss 0.17785171 - time (sec): 8.77 - samples/sec: 5787.16 - lr: 0.000009 - momentum: 0.000000
2023-10-18 20:44:44,402 epoch 8 - iter 792/1984 - loss 0.18108144 - time (sec): 11.77 - samples/sec: 5648.04 - lr: 0.000009 - momentum: 0.000000
2023-10-18 20:44:47,271 epoch 8 - iter 990/1984 - loss 0.17884882 - time (sec): 14.64 - samples/sec: 5596.01 - lr: 0.000008 - momentum: 0.000000
2023-10-18 20:44:50,250 epoch 8 - iter 1188/1984 - loss 0.18579308 - time (sec): 17.62 - samples/sec: 5569.41 - lr: 0.000008 - momentum: 0.000000
2023-10-18 20:44:53,279 epoch 8 - iter 1386/1984 - loss 0.18431354 - time (sec): 20.65 - samples/sec: 5527.58 - lr: 0.000008 - momentum: 0.000000
2023-10-18 20:44:56,298 epoch 8 - iter 1584/1984 - loss 0.18224221 - time (sec): 23.67 - samples/sec: 5503.83 - lr: 0.000007 - momentum: 0.000000
2023-10-18 20:44:59,335 epoch 8 - iter 1782/1984 - loss 0.18145094 - time (sec): 26.71 - samples/sec: 5496.95 - lr: 0.000007 - momentum: 0.000000
2023-10-18 20:45:02,392 epoch 8 - iter 1980/1984 - loss 0.18085147 - time (sec): 29.76 - samples/sec: 5496.75 - lr: 0.000007 - momentum: 0.000000
2023-10-18 20:45:02,463 ----------------------------------------------------------------------------------------------------
2023-10-18 20:45:02,463 EPOCH 8 done: loss 0.1807 - lr: 0.000007
2023-10-18 20:45:04,686 DEV : loss 0.15737873315811157 - f1-score (micro avg)  0.4634
2023-10-18 20:45:04,704 saving best model
2023-10-18 20:45:04,739 ----------------------------------------------------------------------------------------------------
2023-10-18 20:45:07,834 epoch 9 - iter 198/1984 - loss 0.17913017 - time (sec): 3.09 - samples/sec: 5424.89 - lr: 0.000006 - momentum: 0.000000
2023-10-18 20:45:10,867 epoch 9 - iter 396/1984 - loss 0.18063398 - time (sec): 6.13 - samples/sec: 5637.56 - lr: 0.000006 - momentum: 0.000000
2023-10-18 20:45:13,885 epoch 9 - iter 594/1984 - loss 0.17485929 - time (sec): 9.14 - samples/sec: 5510.69 - lr: 0.000006 - momentum: 0.000000
2023-10-18 20:45:16,911 epoch 9 - iter 792/1984 - loss 0.17546060 - time (sec): 12.17 - samples/sec: 5414.96 - lr: 0.000005 - momentum: 0.000000
2023-10-18 20:45:19,931 epoch 9 - iter 990/1984 - loss 0.17552482 - time (sec): 15.19 - samples/sec: 5424.88 - lr: 0.000005 - momentum: 0.000000
2023-10-18 20:45:23,005 epoch 9 - iter 1188/1984 - loss 0.18049553 - time (sec): 18.26 - samples/sec: 5403.10 - lr: 0.000005 - momentum: 0.000000
2023-10-18 20:45:26,042 epoch 9 - iter 1386/1984 - loss 0.18155530 - time (sec): 21.30 - samples/sec: 5357.94 - lr: 0.000004 - momentum: 0.000000
2023-10-18 20:45:29,095 epoch 9 - iter 1584/1984 - loss 0.17860347 - time (sec): 24.36 - samples/sec: 5354.22 - lr: 0.000004 - momentum: 0.000000
2023-10-18 20:45:32,172 epoch 9 - iter 1782/1984 - loss 0.17832306 - time (sec): 27.43 - samples/sec: 5365.33 - lr: 0.000004 - momentum: 0.000000
2023-10-18 20:45:35,265 epoch 9 - iter 1980/1984 - loss 0.17617574 - time (sec): 30.53 - samples/sec: 5361.27 - lr: 0.000003 - momentum: 0.000000
2023-10-18 20:45:35,330 ----------------------------------------------------------------------------------------------------
2023-10-18 20:45:35,330 EPOCH 9 done: loss 0.1760 - lr: 0.000003
2023-10-18 20:45:37,172 DEV : loss 0.15737827122211456 - f1-score (micro avg)  0.4735
2023-10-18 20:45:37,192 saving best model
2023-10-18 20:45:37,227 ----------------------------------------------------------------------------------------------------
2023-10-18 20:45:40,620 epoch 10 - iter 198/1984 - loss 0.18505314 - time (sec): 3.39 - samples/sec: 4622.04 - lr: 0.000003 - momentum: 0.000000
2023-10-18 20:45:43,687 epoch 10 - iter 396/1984 - loss 0.17359687 - time (sec): 6.46 - samples/sec: 5035.29 - lr: 0.000003 - momentum: 0.000000
2023-10-18 20:45:46,745 epoch 10 - iter 594/1984 - loss 0.17583619 - time (sec): 9.52 - samples/sec: 5147.81 - lr: 0.000002 - momentum: 0.000000
2023-10-18 20:45:49,746 epoch 10 - iter 792/1984 - loss 0.17469714 - time (sec): 12.52 - samples/sec: 5204.51 - lr: 0.000002 - momentum: 0.000000
2023-10-18 20:45:52,506 epoch 10 - iter 990/1984 - loss 0.17268153 - time (sec): 15.28 - samples/sec: 5359.97 - lr: 0.000002 - momentum: 0.000000
2023-10-18 20:45:55,438 epoch 10 - iter 1188/1984 - loss 0.17585525 - time (sec): 18.21 - samples/sec: 5413.48 - lr: 0.000001 - momentum: 0.000000
2023-10-18 20:45:58,487 epoch 10 - iter 1386/1984 - loss 0.17518554 - time (sec): 21.26 - samples/sec: 5415.87 - lr: 0.000001 - momentum: 0.000000
2023-10-18 20:46:01,428 epoch 10 - iter 1584/1984 - loss 0.17473003 - time (sec): 24.20 - samples/sec: 5442.09 - lr: 0.000001 - momentum: 0.000000
2023-10-18 20:46:04,477 epoch 10 - iter 1782/1984 - loss 0.17456587 - time (sec): 27.25 - samples/sec: 5406.90 - lr: 0.000000 - momentum: 0.000000
2023-10-18 20:46:07,538 epoch 10 - iter 1980/1984 - loss 0.17442832 - time (sec): 30.31 - samples/sec: 5402.43 - lr: 0.000000 - momentum: 0.000000
2023-10-18 20:46:07,607 ----------------------------------------------------------------------------------------------------
2023-10-18 20:46:07,607 EPOCH 10 done: loss 0.1746 - lr: 0.000000
2023-10-18 20:46:09,452 DEV : loss 0.15687035024166107 - f1-score (micro avg)  0.4721
2023-10-18 20:46:09,500 ----------------------------------------------------------------------------------------------------
2023-10-18 20:46:09,501 Loading model from best epoch ...
2023-10-18 20:46:09,584 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-18 20:46:11,130 
Results:
- F-score (micro) 0.5343
- F-score (macro) 0.3481
- Accuracy 0.4039

By class:
              precision    recall  f1-score   support

         LOC     0.6647    0.6779    0.6712       655
         PER     0.2786    0.5022    0.3584       223
         ORG     0.1000    0.0079    0.0146       127

   micro avg     0.5157    0.5542    0.5343      1005
   macro avg     0.3478    0.3960    0.3481      1005
weighted avg     0.5077    0.5542    0.5188      1005

2023-10-18 20:46:11,130 ----------------------------------------------------------------------------------------------------