Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697661646.46dc0c540dd0.3341.4 +3 -0
- test.tsv +0 -0
- training.log +246 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdfacccf16a64ab09dd99a15475e63de752d5b8f99aa93d4d8c768c87ab053dd
|
3 |
+
size 19045922
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 20:41:19 0.0000 0.7888 0.2271 0.2876 0.2443 0.2642 0.1720
|
3 |
+
2 20:41:51 0.0000 0.2838 0.1987 0.3568 0.3676 0.3621 0.2449
|
4 |
+
3 20:42:23 0.0000 0.2463 0.1812 0.3776 0.3767 0.3771 0.2550
|
5 |
+
4 20:42:56 0.0000 0.2227 0.1686 0.3723 0.4502 0.4076 0.2825
|
6 |
+
5 20:43:28 0.0000 0.2080 0.1608 0.3943 0.4661 0.4272 0.2968
|
7 |
+
6 20:44:00 0.0000 0.1950 0.1577 0.4155 0.4864 0.4482 0.3134
|
8 |
+
7 20:44:32 0.0000 0.1860 0.1586 0.4439 0.4695 0.4563 0.3202
|
9 |
+
8 20:45:04 0.0000 0.1807 0.1574 0.4361 0.4943 0.4634 0.3288
|
10 |
+
9 20:45:37 0.0000 0.1760 0.1574 0.4460 0.5045 0.4735 0.3374
|
11 |
+
10 20:46:09 0.0000 0.1746 0.1569 0.4411 0.5079 0.4721 0.3358
|
runs/events.out.tfevents.1697661646.46dc0c540dd0.3341.4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:552587f941e7c4f7974f7ad474f40e5b492373ff91aa2d64079e7e0add3933ed
|
3 |
+
size 1108164
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-18 20:40:46,083 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-18 20:40:46,083 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 128)
|
7 |
+
(position_embeddings): Embedding(512, 128)
|
8 |
+
(token_type_embeddings): Embedding(2, 128)
|
9 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-1): 2 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=128, out_features=128, bias=True)
|
18 |
+
(key): Linear(in_features=128, out_features=128, bias=True)
|
19 |
+
(value): Linear(in_features=128, out_features=128, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=128, out_features=512, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=512, out_features=128, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=128, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-18 20:40:46,083 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-18 20:40:46,083 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
52 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
|
53 |
+
2023-10-18 20:40:46,083 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-18 20:40:46,083 Train: 7936 sentences
|
55 |
+
2023-10-18 20:40:46,083 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-18 20:40:46,083 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-18 20:40:46,083 Training Params:
|
58 |
+
2023-10-18 20:40:46,083 - learning_rate: "3e-05"
|
59 |
+
2023-10-18 20:40:46,084 - mini_batch_size: "4"
|
60 |
+
2023-10-18 20:40:46,084 - max_epochs: "10"
|
61 |
+
2023-10-18 20:40:46,084 - shuffle: "True"
|
62 |
+
2023-10-18 20:40:46,084 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-18 20:40:46,084 Plugins:
|
64 |
+
2023-10-18 20:40:46,084 - TensorboardLogger
|
65 |
+
2023-10-18 20:40:46,084 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-18 20:40:46,084 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-18 20:40:46,084 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-18 20:40:46,084 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-18 20:40:46,084 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-18 20:40:46,084 Computation:
|
71 |
+
2023-10-18 20:40:46,084 - compute on device: cuda:0
|
72 |
+
2023-10-18 20:40:46,084 - embedding storage: none
|
73 |
+
2023-10-18 20:40:46,084 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-18 20:40:46,084 Model training base path: "hmbench-icdar/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
|
75 |
+
2023-10-18 20:40:46,084 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-18 20:40:46,084 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-18 20:40:46,084 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-18 20:40:49,484 epoch 1 - iter 198/1984 - loss 2.40181665 - time (sec): 3.40 - samples/sec: 4847.36 - lr: 0.000003 - momentum: 0.000000
|
79 |
+
2023-10-18 20:40:52,929 epoch 1 - iter 396/1984 - loss 2.06051017 - time (sec): 6.85 - samples/sec: 4779.10 - lr: 0.000006 - momentum: 0.000000
|
80 |
+
2023-10-18 20:40:56,097 epoch 1 - iter 594/1984 - loss 1.65005864 - time (sec): 10.01 - samples/sec: 4974.57 - lr: 0.000009 - momentum: 0.000000
|
81 |
+
2023-10-18 20:40:59,185 epoch 1 - iter 792/1984 - loss 1.36396891 - time (sec): 13.10 - samples/sec: 5050.84 - lr: 0.000012 - momentum: 0.000000
|
82 |
+
2023-10-18 20:41:02,224 epoch 1 - iter 990/1984 - loss 1.19110595 - time (sec): 16.14 - samples/sec: 5155.96 - lr: 0.000015 - momentum: 0.000000
|
83 |
+
2023-10-18 20:41:05,316 epoch 1 - iter 1188/1984 - loss 1.06964597 - time (sec): 19.23 - samples/sec: 5168.26 - lr: 0.000018 - momentum: 0.000000
|
84 |
+
2023-10-18 20:41:08,345 epoch 1 - iter 1386/1984 - loss 0.97250875 - time (sec): 22.26 - samples/sec: 5200.44 - lr: 0.000021 - momentum: 0.000000
|
85 |
+
2023-10-18 20:41:11,364 epoch 1 - iter 1584/1984 - loss 0.89537197 - time (sec): 25.28 - samples/sec: 5207.18 - lr: 0.000024 - momentum: 0.000000
|
86 |
+
2023-10-18 20:41:14,412 epoch 1 - iter 1782/1984 - loss 0.83846567 - time (sec): 28.33 - samples/sec: 5199.51 - lr: 0.000027 - momentum: 0.000000
|
87 |
+
2023-10-18 20:41:17,456 epoch 1 - iter 1980/1984 - loss 0.79010219 - time (sec): 31.37 - samples/sec: 5217.57 - lr: 0.000030 - momentum: 0.000000
|
88 |
+
2023-10-18 20:41:17,514 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-18 20:41:17,514 EPOCH 1 done: loss 0.7888 - lr: 0.000030
|
90 |
+
2023-10-18 20:41:19,039 DEV : loss 0.22708812355995178 - f1-score (micro avg) 0.2642
|
91 |
+
2023-10-18 20:41:19,058 saving best model
|
92 |
+
2023-10-18 20:41:19,093 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-18 20:41:22,126 epoch 2 - iter 198/1984 - loss 0.32835931 - time (sec): 3.03 - samples/sec: 5320.46 - lr: 0.000030 - momentum: 0.000000
|
94 |
+
2023-10-18 20:41:25,167 epoch 2 - iter 396/1984 - loss 0.29962721 - time (sec): 6.07 - samples/sec: 5482.59 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-18 20:41:28,151 epoch 2 - iter 594/1984 - loss 0.29692658 - time (sec): 9.06 - samples/sec: 5412.42 - lr: 0.000029 - momentum: 0.000000
|
96 |
+
2023-10-18 20:41:31,207 epoch 2 - iter 792/1984 - loss 0.29657996 - time (sec): 12.11 - samples/sec: 5383.77 - lr: 0.000029 - momentum: 0.000000
|
97 |
+
2023-10-18 20:41:34,225 epoch 2 - iter 990/1984 - loss 0.28962444 - time (sec): 15.13 - samples/sec: 5372.89 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-18 20:41:37,219 epoch 2 - iter 1188/1984 - loss 0.28843578 - time (sec): 18.13 - samples/sec: 5362.62 - lr: 0.000028 - momentum: 0.000000
|
99 |
+
2023-10-18 20:41:40,292 epoch 2 - iter 1386/1984 - loss 0.29008589 - time (sec): 21.20 - samples/sec: 5333.12 - lr: 0.000028 - momentum: 0.000000
|
100 |
+
2023-10-18 20:41:43,095 epoch 2 - iter 1584/1984 - loss 0.28766926 - time (sec): 24.00 - samples/sec: 5415.25 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-18 20:41:46,153 epoch 2 - iter 1782/1984 - loss 0.28669108 - time (sec): 27.06 - samples/sec: 5436.91 - lr: 0.000027 - momentum: 0.000000
|
102 |
+
2023-10-18 20:41:49,222 epoch 2 - iter 1980/1984 - loss 0.28366818 - time (sec): 30.13 - samples/sec: 5432.08 - lr: 0.000027 - momentum: 0.000000
|
103 |
+
2023-10-18 20:41:49,279 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-18 20:41:49,279 EPOCH 2 done: loss 0.2838 - lr: 0.000027
|
105 |
+
2023-10-18 20:41:51,481 DEV : loss 0.19872356951236725 - f1-score (micro avg) 0.3621
|
106 |
+
2023-10-18 20:41:51,500 saving best model
|
107 |
+
2023-10-18 20:41:51,532 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-18 20:41:54,500 epoch 3 - iter 198/1984 - loss 0.24485053 - time (sec): 2.97 - samples/sec: 5641.36 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-18 20:41:57,549 epoch 3 - iter 396/1984 - loss 0.25674337 - time (sec): 6.02 - samples/sec: 5432.56 - lr: 0.000026 - momentum: 0.000000
|
110 |
+
2023-10-18 20:42:00,576 epoch 3 - iter 594/1984 - loss 0.25987147 - time (sec): 9.04 - samples/sec: 5408.81 - lr: 0.000026 - momentum: 0.000000
|
111 |
+
2023-10-18 20:42:03,632 epoch 3 - iter 792/1984 - loss 0.25653396 - time (sec): 12.10 - samples/sec: 5357.86 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-18 20:42:06,666 epoch 3 - iter 990/1984 - loss 0.24885921 - time (sec): 15.13 - samples/sec: 5396.16 - lr: 0.000025 - momentum: 0.000000
|
113 |
+
2023-10-18 20:42:09,707 epoch 3 - iter 1188/1984 - loss 0.25191638 - time (sec): 18.17 - samples/sec: 5341.92 - lr: 0.000025 - momentum: 0.000000
|
114 |
+
2023-10-18 20:42:12,610 epoch 3 - iter 1386/1984 - loss 0.25739981 - time (sec): 21.08 - samples/sec: 5388.28 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-18 20:42:15,681 epoch 3 - iter 1584/1984 - loss 0.25300334 - time (sec): 24.15 - samples/sec: 5398.44 - lr: 0.000024 - momentum: 0.000000
|
116 |
+
2023-10-18 20:42:18,737 epoch 3 - iter 1782/1984 - loss 0.24809037 - time (sec): 27.20 - samples/sec: 5403.39 - lr: 0.000024 - momentum: 0.000000
|
117 |
+
2023-10-18 20:42:21,795 epoch 3 - iter 1980/1984 - loss 0.24646940 - time (sec): 30.26 - samples/sec: 5404.26 - lr: 0.000023 - momentum: 0.000000
|
118 |
+
2023-10-18 20:42:21,867 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-18 20:42:21,867 EPOCH 3 done: loss 0.2463 - lr: 0.000023
|
120 |
+
2023-10-18 20:42:23,662 DEV : loss 0.18124178051948547 - f1-score (micro avg) 0.3771
|
121 |
+
2023-10-18 20:42:23,680 saving best model
|
122 |
+
2023-10-18 20:42:23,714 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-18 20:42:26,738 epoch 4 - iter 198/1984 - loss 0.23822861 - time (sec): 3.02 - samples/sec: 5210.29 - lr: 0.000023 - momentum: 0.000000
|
124 |
+
2023-10-18 20:42:29,815 epoch 4 - iter 396/1984 - loss 0.23209028 - time (sec): 6.10 - samples/sec: 5352.30 - lr: 0.000023 - momentum: 0.000000
|
125 |
+
2023-10-18 20:42:32,825 epoch 4 - iter 594/1984 - loss 0.22861673 - time (sec): 9.11 - samples/sec: 5254.98 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-18 20:42:35,855 epoch 4 - iter 792/1984 - loss 0.22608576 - time (sec): 12.14 - samples/sec: 5233.89 - lr: 0.000022 - momentum: 0.000000
|
127 |
+
2023-10-18 20:42:38,904 epoch 4 - iter 990/1984 - loss 0.22959492 - time (sec): 15.19 - samples/sec: 5306.19 - lr: 0.000022 - momentum: 0.000000
|
128 |
+
2023-10-18 20:42:41,627 epoch 4 - iter 1188/1984 - loss 0.22608383 - time (sec): 17.91 - samples/sec: 5413.99 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-18 20:42:44,722 epoch 4 - iter 1386/1984 - loss 0.22511283 - time (sec): 21.01 - samples/sec: 5393.16 - lr: 0.000021 - momentum: 0.000000
|
130 |
+
2023-10-18 20:42:47,953 epoch 4 - iter 1584/1984 - loss 0.22675445 - time (sec): 24.24 - samples/sec: 5359.52 - lr: 0.000021 - momentum: 0.000000
|
131 |
+
2023-10-18 20:42:51,209 epoch 4 - iter 1782/1984 - loss 0.22351402 - time (sec): 27.49 - samples/sec: 5338.20 - lr: 0.000020 - momentum: 0.000000
|
132 |
+
2023-10-18 20:42:54,429 epoch 4 - iter 1980/1984 - loss 0.22289582 - time (sec): 30.71 - samples/sec: 5326.93 - lr: 0.000020 - momentum: 0.000000
|
133 |
+
2023-10-18 20:42:54,494 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-18 20:42:54,494 EPOCH 4 done: loss 0.2227 - lr: 0.000020
|
135 |
+
2023-10-18 20:42:56,316 DEV : loss 0.1685991734266281 - f1-score (micro avg) 0.4076
|
136 |
+
2023-10-18 20:42:56,334 saving best model
|
137 |
+
2023-10-18 20:42:56,368 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-18 20:42:59,420 epoch 5 - iter 198/1984 - loss 0.18916448 - time (sec): 3.05 - samples/sec: 5486.17 - lr: 0.000020 - momentum: 0.000000
|
139 |
+
2023-10-18 20:43:02,418 epoch 5 - iter 396/1984 - loss 0.19556003 - time (sec): 6.05 - samples/sec: 5364.05 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-18 20:43:05,400 epoch 5 - iter 594/1984 - loss 0.19887775 - time (sec): 9.03 - samples/sec: 5281.04 - lr: 0.000019 - momentum: 0.000000
|
141 |
+
2023-10-18 20:43:08,412 epoch 5 - iter 792/1984 - loss 0.19819805 - time (sec): 12.04 - samples/sec: 5354.70 - lr: 0.000019 - momentum: 0.000000
|
142 |
+
2023-10-18 20:43:11,457 epoch 5 - iter 990/1984 - loss 0.20054697 - time (sec): 15.09 - samples/sec: 5333.89 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-18 20:43:14,512 epoch 5 - iter 1188/1984 - loss 0.20228121 - time (sec): 18.14 - samples/sec: 5324.58 - lr: 0.000018 - momentum: 0.000000
|
144 |
+
2023-10-18 20:43:17,524 epoch 5 - iter 1386/1984 - loss 0.20335431 - time (sec): 21.15 - samples/sec: 5352.50 - lr: 0.000018 - momentum: 0.000000
|
145 |
+
2023-10-18 20:43:20,519 epoch 5 - iter 1584/1984 - loss 0.20160468 - time (sec): 24.15 - samples/sec: 5381.60 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-10-18 20:43:23,580 epoch 5 - iter 1782/1984 - loss 0.20444659 - time (sec): 27.21 - samples/sec: 5400.66 - lr: 0.000017 - momentum: 0.000000
|
147 |
+
2023-10-18 20:43:26,633 epoch 5 - iter 1980/1984 - loss 0.20797252 - time (sec): 30.26 - samples/sec: 5405.93 - lr: 0.000017 - momentum: 0.000000
|
148 |
+
2023-10-18 20:43:26,699 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-18 20:43:26,699 EPOCH 5 done: loss 0.2080 - lr: 0.000017
|
150 |
+
2023-10-18 20:43:28,526 DEV : loss 0.16076675057411194 - f1-score (micro avg) 0.4272
|
151 |
+
2023-10-18 20:43:28,544 saving best model
|
152 |
+
2023-10-18 20:43:28,580 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-18 20:43:31,611 epoch 6 - iter 198/1984 - loss 0.18626775 - time (sec): 3.03 - samples/sec: 5385.04 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-10-18 20:43:34,762 epoch 6 - iter 396/1984 - loss 0.18358758 - time (sec): 6.18 - samples/sec: 5174.46 - lr: 0.000016 - momentum: 0.000000
|
155 |
+
2023-10-18 20:43:37,867 epoch 6 - iter 594/1984 - loss 0.18721054 - time (sec): 9.29 - samples/sec: 5277.32 - lr: 0.000016 - momentum: 0.000000
|
156 |
+
2023-10-18 20:43:40,881 epoch 6 - iter 792/1984 - loss 0.18658538 - time (sec): 12.30 - samples/sec: 5288.77 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-10-18 20:43:43,940 epoch 6 - iter 990/1984 - loss 0.18950152 - time (sec): 15.36 - samples/sec: 5274.00 - lr: 0.000015 - momentum: 0.000000
|
158 |
+
2023-10-18 20:43:46,978 epoch 6 - iter 1188/1984 - loss 0.18810016 - time (sec): 18.40 - samples/sec: 5298.65 - lr: 0.000015 - momentum: 0.000000
|
159 |
+
2023-10-18 20:43:49,811 epoch 6 - iter 1386/1984 - loss 0.19049194 - time (sec): 21.23 - samples/sec: 5340.47 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2023-10-18 20:43:52,777 epoch 6 - iter 1584/1984 - loss 0.19125360 - time (sec): 24.20 - samples/sec: 5349.24 - lr: 0.000014 - momentum: 0.000000
|
161 |
+
2023-10-18 20:43:55,574 epoch 6 - iter 1782/1984 - loss 0.19255913 - time (sec): 26.99 - samples/sec: 5394.96 - lr: 0.000014 - momentum: 0.000000
|
162 |
+
2023-10-18 20:43:58,643 epoch 6 - iter 1980/1984 - loss 0.19515696 - time (sec): 30.06 - samples/sec: 5444.12 - lr: 0.000013 - momentum: 0.000000
|
163 |
+
2023-10-18 20:43:58,710 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-18 20:43:58,710 EPOCH 6 done: loss 0.1950 - lr: 0.000013
|
165 |
+
2023-10-18 20:44:00,528 DEV : loss 0.1576894223690033 - f1-score (micro avg) 0.4482
|
166 |
+
2023-10-18 20:44:00,546 saving best model
|
167 |
+
2023-10-18 20:44:00,581 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-18 20:44:03,606 epoch 7 - iter 198/1984 - loss 0.20041330 - time (sec): 3.02 - samples/sec: 5330.01 - lr: 0.000013 - momentum: 0.000000
|
169 |
+
2023-10-18 20:44:06,304 epoch 7 - iter 396/1984 - loss 0.19185999 - time (sec): 5.72 - samples/sec: 5607.62 - lr: 0.000013 - momentum: 0.000000
|
170 |
+
2023-10-18 20:44:09,246 epoch 7 - iter 594/1984 - loss 0.19074333 - time (sec): 8.66 - samples/sec: 5651.53 - lr: 0.000012 - momentum: 0.000000
|
171 |
+
2023-10-18 20:44:12,277 epoch 7 - iter 792/1984 - loss 0.19616294 - time (sec): 11.70 - samples/sec: 5593.71 - lr: 0.000012 - momentum: 0.000000
|
172 |
+
2023-10-18 20:44:15,367 epoch 7 - iter 990/1984 - loss 0.19168219 - time (sec): 14.79 - samples/sec: 5536.96 - lr: 0.000012 - momentum: 0.000000
|
173 |
+
2023-10-18 20:44:18,405 epoch 7 - iter 1188/1984 - loss 0.18962249 - time (sec): 17.82 - samples/sec: 5504.98 - lr: 0.000011 - momentum: 0.000000
|
174 |
+
2023-10-18 20:44:21,422 epoch 7 - iter 1386/1984 - loss 0.18950612 - time (sec): 20.84 - samples/sec: 5474.31 - lr: 0.000011 - momentum: 0.000000
|
175 |
+
2023-10-18 20:44:24,452 epoch 7 - iter 1584/1984 - loss 0.18837304 - time (sec): 23.87 - samples/sec: 5449.01 - lr: 0.000011 - momentum: 0.000000
|
176 |
+
2023-10-18 20:44:27,644 epoch 7 - iter 1782/1984 - loss 0.18498108 - time (sec): 27.06 - samples/sec: 5459.72 - lr: 0.000010 - momentum: 0.000000
|
177 |
+
2023-10-18 20:44:30,700 epoch 7 - iter 1980/1984 - loss 0.18632929 - time (sec): 30.12 - samples/sec: 5433.74 - lr: 0.000010 - momentum: 0.000000
|
178 |
+
2023-10-18 20:44:30,761 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-18 20:44:30,761 EPOCH 7 done: loss 0.1860 - lr: 0.000010
|
180 |
+
2023-10-18 20:44:32,576 DEV : loss 0.158553346991539 - f1-score (micro avg) 0.4563
|
181 |
+
2023-10-18 20:44:32,594 saving best model
|
182 |
+
2023-10-18 20:44:32,627 ----------------------------------------------------------------------------------------------------
|
183 |
+
2023-10-18 20:44:35,383 epoch 8 - iter 198/1984 - loss 0.18600477 - time (sec): 2.75 - samples/sec: 6073.68 - lr: 0.000010 - momentum: 0.000000
|
184 |
+
2023-10-18 20:44:38,367 epoch 8 - iter 396/1984 - loss 0.17748589 - time (sec): 5.74 - samples/sec: 5766.31 - lr: 0.000009 - momentum: 0.000000
|
185 |
+
2023-10-18 20:44:41,403 epoch 8 - iter 594/1984 - loss 0.17785171 - time (sec): 8.77 - samples/sec: 5787.16 - lr: 0.000009 - momentum: 0.000000
|
186 |
+
2023-10-18 20:44:44,402 epoch 8 - iter 792/1984 - loss 0.18108144 - time (sec): 11.77 - samples/sec: 5648.04 - lr: 0.000009 - momentum: 0.000000
|
187 |
+
2023-10-18 20:44:47,271 epoch 8 - iter 990/1984 - loss 0.17884882 - time (sec): 14.64 - samples/sec: 5596.01 - lr: 0.000008 - momentum: 0.000000
|
188 |
+
2023-10-18 20:44:50,250 epoch 8 - iter 1188/1984 - loss 0.18579308 - time (sec): 17.62 - samples/sec: 5569.41 - lr: 0.000008 - momentum: 0.000000
|
189 |
+
2023-10-18 20:44:53,279 epoch 8 - iter 1386/1984 - loss 0.18431354 - time (sec): 20.65 - samples/sec: 5527.58 - lr: 0.000008 - momentum: 0.000000
|
190 |
+
2023-10-18 20:44:56,298 epoch 8 - iter 1584/1984 - loss 0.18224221 - time (sec): 23.67 - samples/sec: 5503.83 - lr: 0.000007 - momentum: 0.000000
|
191 |
+
2023-10-18 20:44:59,335 epoch 8 - iter 1782/1984 - loss 0.18145094 - time (sec): 26.71 - samples/sec: 5496.95 - lr: 0.000007 - momentum: 0.000000
|
192 |
+
2023-10-18 20:45:02,392 epoch 8 - iter 1980/1984 - loss 0.18085147 - time (sec): 29.76 - samples/sec: 5496.75 - lr: 0.000007 - momentum: 0.000000
|
193 |
+
2023-10-18 20:45:02,463 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-18 20:45:02,463 EPOCH 8 done: loss 0.1807 - lr: 0.000007
|
195 |
+
2023-10-18 20:45:04,686 DEV : loss 0.15737873315811157 - f1-score (micro avg) 0.4634
|
196 |
+
2023-10-18 20:45:04,704 saving best model
|
197 |
+
2023-10-18 20:45:04,739 ----------------------------------------------------------------------------------------------------
|
198 |
+
2023-10-18 20:45:07,834 epoch 9 - iter 198/1984 - loss 0.17913017 - time (sec): 3.09 - samples/sec: 5424.89 - lr: 0.000006 - momentum: 0.000000
|
199 |
+
2023-10-18 20:45:10,867 epoch 9 - iter 396/1984 - loss 0.18063398 - time (sec): 6.13 - samples/sec: 5637.56 - lr: 0.000006 - momentum: 0.000000
|
200 |
+
2023-10-18 20:45:13,885 epoch 9 - iter 594/1984 - loss 0.17485929 - time (sec): 9.14 - samples/sec: 5510.69 - lr: 0.000006 - momentum: 0.000000
|
201 |
+
2023-10-18 20:45:16,911 epoch 9 - iter 792/1984 - loss 0.17546060 - time (sec): 12.17 - samples/sec: 5414.96 - lr: 0.000005 - momentum: 0.000000
|
202 |
+
2023-10-18 20:45:19,931 epoch 9 - iter 990/1984 - loss 0.17552482 - time (sec): 15.19 - samples/sec: 5424.88 - lr: 0.000005 - momentum: 0.000000
|
203 |
+
2023-10-18 20:45:23,005 epoch 9 - iter 1188/1984 - loss 0.18049553 - time (sec): 18.26 - samples/sec: 5403.10 - lr: 0.000005 - momentum: 0.000000
|
204 |
+
2023-10-18 20:45:26,042 epoch 9 - iter 1386/1984 - loss 0.18155530 - time (sec): 21.30 - samples/sec: 5357.94 - lr: 0.000004 - momentum: 0.000000
|
205 |
+
2023-10-18 20:45:29,095 epoch 9 - iter 1584/1984 - loss 0.17860347 - time (sec): 24.36 - samples/sec: 5354.22 - lr: 0.000004 - momentum: 0.000000
|
206 |
+
2023-10-18 20:45:32,172 epoch 9 - iter 1782/1984 - loss 0.17832306 - time (sec): 27.43 - samples/sec: 5365.33 - lr: 0.000004 - momentum: 0.000000
|
207 |
+
2023-10-18 20:45:35,265 epoch 9 - iter 1980/1984 - loss 0.17617574 - time (sec): 30.53 - samples/sec: 5361.27 - lr: 0.000003 - momentum: 0.000000
|
208 |
+
2023-10-18 20:45:35,330 ----------------------------------------------------------------------------------------------------
|
209 |
+
2023-10-18 20:45:35,330 EPOCH 9 done: loss 0.1760 - lr: 0.000003
|
210 |
+
2023-10-18 20:45:37,172 DEV : loss 0.15737827122211456 - f1-score (micro avg) 0.4735
|
211 |
+
2023-10-18 20:45:37,192 saving best model
|
212 |
+
2023-10-18 20:45:37,227 ----------------------------------------------------------------------------------------------------
|
213 |
+
2023-10-18 20:45:40,620 epoch 10 - iter 198/1984 - loss 0.18505314 - time (sec): 3.39 - samples/sec: 4622.04 - lr: 0.000003 - momentum: 0.000000
|
214 |
+
2023-10-18 20:45:43,687 epoch 10 - iter 396/1984 - loss 0.17359687 - time (sec): 6.46 - samples/sec: 5035.29 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-10-18 20:45:46,745 epoch 10 - iter 594/1984 - loss 0.17583619 - time (sec): 9.52 - samples/sec: 5147.81 - lr: 0.000002 - momentum: 0.000000
|
216 |
+
2023-10-18 20:45:49,746 epoch 10 - iter 792/1984 - loss 0.17469714 - time (sec): 12.52 - samples/sec: 5204.51 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-18 20:45:52,506 epoch 10 - iter 990/1984 - loss 0.17268153 - time (sec): 15.28 - samples/sec: 5359.97 - lr: 0.000002 - momentum: 0.000000
|
218 |
+
2023-10-18 20:45:55,438 epoch 10 - iter 1188/1984 - loss 0.17585525 - time (sec): 18.21 - samples/sec: 5413.48 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-18 20:45:58,487 epoch 10 - iter 1386/1984 - loss 0.17518554 - time (sec): 21.26 - samples/sec: 5415.87 - lr: 0.000001 - momentum: 0.000000
|
220 |
+
2023-10-18 20:46:01,428 epoch 10 - iter 1584/1984 - loss 0.17473003 - time (sec): 24.20 - samples/sec: 5442.09 - lr: 0.000001 - momentum: 0.000000
|
221 |
+
2023-10-18 20:46:04,477 epoch 10 - iter 1782/1984 - loss 0.17456587 - time (sec): 27.25 - samples/sec: 5406.90 - lr: 0.000000 - momentum: 0.000000
|
222 |
+
2023-10-18 20:46:07,538 epoch 10 - iter 1980/1984 - loss 0.17442832 - time (sec): 30.31 - samples/sec: 5402.43 - lr: 0.000000 - momentum: 0.000000
|
223 |
+
2023-10-18 20:46:07,607 ----------------------------------------------------------------------------------------------------
|
224 |
+
2023-10-18 20:46:07,607 EPOCH 10 done: loss 0.1746 - lr: 0.000000
|
225 |
+
2023-10-18 20:46:09,452 DEV : loss 0.15687035024166107 - f1-score (micro avg) 0.4721
|
226 |
+
2023-10-18 20:46:09,500 ----------------------------------------------------------------------------------------------------
|
227 |
+
2023-10-18 20:46:09,501 Loading model from best epoch ...
|
228 |
+
2023-10-18 20:46:09,584 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
229 |
+
2023-10-18 20:46:11,130
|
230 |
+
Results:
|
231 |
+
- F-score (micro) 0.5343
|
232 |
+
- F-score (macro) 0.3481
|
233 |
+
- Accuracy 0.4039
|
234 |
+
|
235 |
+
By class:
|
236 |
+
precision recall f1-score support
|
237 |
+
|
238 |
+
LOC 0.6647 0.6779 0.6712 655
|
239 |
+
PER 0.2786 0.5022 0.3584 223
|
240 |
+
ORG 0.1000 0.0079 0.0146 127
|
241 |
+
|
242 |
+
micro avg 0.5157 0.5542 0.5343 1005
|
243 |
+
macro avg 0.3478 0.3960 0.3481 1005
|
244 |
+
weighted avg 0.5077 0.5542 0.5188 1005
|
245 |
+
|
246 |
+
2023-10-18 20:46:11,130 ----------------------------------------------------------------------------------------------------
|