Files changed (1) hide show
  1. README.md +145 -0
README.md CHANGED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: llama
3
+ tags:
4
+ - quantization
5
+ - efficient-inference
6
+ - natural-language-processing
7
+ - language-model
8
+ - ai-research
9
+ - open-source
10
+ license: apache-2.0
11
+ datasets:
12
+ - dataset-name1 # Replace with the actual dataset(s) used
13
+ - dataset-name2
14
+ language: en
15
+ model_architecture: llama
16
+ model_size: 6.74B
17
+ quantization: Q2_K
18
+ inference: true
19
+ training_data: "This model was trained on a combination of publicly available datasets to ensure robust performance across various NLP tasks."
20
+ source_code: false # Set true if source code is provided; false otherwise
21
+ documentation: https://huggingface.co/steef68/ATLAS-QUANTUM/resolve/main/README.md
22
+ ---
23
+
24
+ ## Usage
25
+
26
+ ### Installation
27
+ Clone the repository and install necessary dependencies:
28
+ ```bash
29
+ git clone https://huggingface.co/steef68/ATLAS-QUANTUM
30
+ cd ATLAS-QUANTUM
31
+ pip install -r requirements.txt
32
+
33
+ Model Loading
34
+
35
+ Use the Hugging Face transformers library to load the model:
36
+
37
+ from transformers import AutoModelForCausalLM, AutoTokenizer
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained("steef68/ATLAS-QUANTUM")
40
+ model = AutoModelForCausalLM.from_pretrained("steef68/ATLAS-QUANTUM", quantization=True)
41
+
42
+ inputs = tokenizer("Your input text here", return_tensors="pt")
43
+ outputs = model.generate(inputs["input_ids"], max_length=50)
44
+ print(tokenizer.decode(outputs[0]))
45
+
46
+
47
+ ---
48
+
49
+ Applications
50
+
51
+ The ATLAS-QUANTUM model is designed for applications such as:
52
+
53
+ Text generation
54
+
55
+ Chatbots and conversational AI
56
+
57
+ Text summarization
58
+
59
+ Creative writing assistance
60
+
61
+
62
+
63
+ ---
64
+
65
+ Training and Datasets
66
+
67
+ This model was fine-tuned using a highly curated dataset to ensure robust performance. Details on the specific dataset(s) used are currently placeholders (<dataset-name>) and will be updated as they are finalized.
68
+
69
+
70
+ ---
71
+
72
+ Limitations
73
+
74
+ The model is trained on English text and may not perform optimally in other languages.
75
+
76
+ Due to the 2-bit quantization, slight reductions in accuracy may occur in certain edge cases.
77
+
78
+ Runtime issues may occur in environments not optimized for quantized models.
79
+
80
+
81
+
82
+ ---
83
+
84
+ Resources
85
+
86
+ Model Repository: ATLAS-QUANTUM
87
+
88
+ Hugging Face Documentation: Model Cards
89
+
90
+
91
+
92
+ ---
93
+
94
+ License
95
+
96
+ This model is released under the Apache 2.0 License. Users are encouraged to review the license before use.
97
+
98
+
99
+ ---
100
+
101
+ Contact and Support
102
+
103
+ For any issues, feature requests, or contributions, please reach out to the repository maintainer at Hugging Face.
104
+
105
+ ### Explanation of Additions:
106
+ 1. **Metadata Block:** Includes essential details such as `library_name`, `tags`, `datasets`, `model_architecture`, and other relevant fields to align with Hugging Face's model card standards.
107
+ 2. **Model Details:** Expands on model usage, applications, and limitations.
108
+ 3. **Resources and Licensing:** Provides clear references for further support and licensing information.
109
+ 4. **Placeholders:** Marked where dataset details are missing for future updates.
110
+
111
+ ---
112
+
113
+ Here’s a sample YAML metadata for the ATLAS-QUANTUM model card:
114
+
115
+
116
+ Explanation of the Fields:
117
+
118
+ library_name: Indicates the model library (e.g., LLaMA in this case).
119
+
120
+ tags: Lists relevant tags to help users find your model (e.g., quantization, language-model).
121
+
122
+ license: Specifies the model’s license type (e.g., apache-2.0).
123
+
124
+ datasets: Placeholder for datasets used during training (replace with actual names).
125
+
126
+ language: Indicates the primary language the model supports (English in this case).
127
+
128
+ model_architecture: Specifies the architecture of the model (e.g., LLaMA).
129
+
130
+ model_size: States the parameter size of the model (e.g., 6.74B).
131
+
132
+ quantization: Notes the quantization method applied to the model (e.g., Q2_K).
133
+
134
+ inference: Indicates whether the model is optimized for inference.
135
+
136
+ training_data: A brief description of the data used to train the model.
137
+
138
+ source_code: Boolean field indicating whether the source code is included.
139
+
140
+ documentation: Link to the model's documentation or README file.
141
+
142
+
143
+ This YAML file resolves metadata warnings and aligns with Hugging Face’s requirements for model cards. Ensure you update placeholder fields with accurate details!
144
+
145
+