stayconnect's picture
layoutlmv3-finetuned-cord_100
506ee77
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- cord-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord_100
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cord-layoutlmv3
type: cord-layoutlmv3
config: cord
split: test
args: cord
metrics:
- name: Precision
type: precision
value: 0.9458456973293768
- name: Recall
type: recall
value: 0.9543413173652695
- name: F1
type: f1
value: 0.9500745156482863
- name: Accuracy
type: accuracy
value: 0.9605263157894737
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-cord_100
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2092
- Precision: 0.9458
- Recall: 0.9543
- F1: 0.9501
- Accuracy: 0.9605
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.56 | 250 | 0.9809 | 0.7284 | 0.7829 | 0.7547 | 0.7890 |
| 1.3679 | 3.12 | 500 | 0.5431 | 0.8426 | 0.8653 | 0.8538 | 0.8727 |
| 1.3679 | 4.69 | 750 | 0.3871 | 0.8939 | 0.9147 | 0.9042 | 0.9198 |
| 0.3879 | 6.25 | 1000 | 0.3038 | 0.9175 | 0.9326 | 0.9250 | 0.9389 |
| 0.3879 | 7.81 | 1250 | 0.2561 | 0.9255 | 0.9386 | 0.9320 | 0.9448 |
| 0.2076 | 9.38 | 1500 | 0.2329 | 0.9342 | 0.9454 | 0.9397 | 0.9533 |
| 0.2076 | 10.94 | 1750 | 0.2166 | 0.9458 | 0.9536 | 0.9497 | 0.9605 |
| 0.1404 | 12.5 | 2000 | 0.2144 | 0.9488 | 0.9566 | 0.9527 | 0.9622 |
| 0.1404 | 14.06 | 2250 | 0.2147 | 0.9495 | 0.9573 | 0.9534 | 0.9626 |
| 0.109 | 15.62 | 2500 | 0.2092 | 0.9458 | 0.9543 | 0.9501 | 0.9605 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1