|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cord-layoutlmv3 |
|
type: cord-layoutlmv3 |
|
config: cord |
|
split: test |
|
args: cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9458456973293768 |
|
- name: Recall |
|
type: recall |
|
value: 0.9543413173652695 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9500745156482863 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9605263157894737 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord_100 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2092 |
|
- Precision: 0.9458 |
|
- Recall: 0.9543 |
|
- F1: 0.9501 |
|
- Accuracy: 0.9605 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.56 | 250 | 0.9809 | 0.7284 | 0.7829 | 0.7547 | 0.7890 | |
|
| 1.3679 | 3.12 | 500 | 0.5431 | 0.8426 | 0.8653 | 0.8538 | 0.8727 | |
|
| 1.3679 | 4.69 | 750 | 0.3871 | 0.8939 | 0.9147 | 0.9042 | 0.9198 | |
|
| 0.3879 | 6.25 | 1000 | 0.3038 | 0.9175 | 0.9326 | 0.9250 | 0.9389 | |
|
| 0.3879 | 7.81 | 1250 | 0.2561 | 0.9255 | 0.9386 | 0.9320 | 0.9448 | |
|
| 0.2076 | 9.38 | 1500 | 0.2329 | 0.9342 | 0.9454 | 0.9397 | 0.9533 | |
|
| 0.2076 | 10.94 | 1750 | 0.2166 | 0.9458 | 0.9536 | 0.9497 | 0.9605 | |
|
| 0.1404 | 12.5 | 2000 | 0.2144 | 0.9488 | 0.9566 | 0.9527 | 0.9622 | |
|
| 0.1404 | 14.06 | 2250 | 0.2147 | 0.9495 | 0.9573 | 0.9534 | 0.9626 | |
|
| 0.109 | 15.62 | 2500 | 0.2092 | 0.9458 | 0.9543 | 0.9501 | 0.9605 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|