transcript-analysis / handler.py
ddemszky
added custom handler
91cb36e
raw
history blame
9.74 kB
from typing import Dict, List, Any
from scipy.special import softmax
import numpy as np
import weakref
from utils import clean_str, clean_str_nopunct
import torch
from transformers import BertTokenizer, BertForSequenceClassification
from utils import MultiHeadModel, BertInputBuilder, get_num_words
UPTAKE_MODEL='ddemszky/uptake-model'
REASONING_MODEL ='ddemszky/student-reasoning'
QUESTION_MODEL ='ddemszky/question-detection'
class Utterance:
def __init__(self, speaker, text, uid=None,
transcript=None, starttime=None, endtime=None, **kwargs):
self.speaker = speaker
self.text = text
self.uid = uid
self.starttime = starttime
self.endtime = endtime
self.transcript = weakref.ref(transcript) if transcript else None
self.props = kwargs
self.uptake = None
self.reasoning = None
self.question = None
def get_clean_text(self, remove_punct=False):
if remove_punct:
return clean_str_nopunct(self.text)
return clean_str(self.text)
def get_num_words(self):
return get_num_words(self.text)
def to_dict(self):
return {
'speaker': self.speaker,
'text': self.text,
'uid': self.uid,
'starttime': self.starttime,
'endtime': self.endtime,
'uptake': self.uptake,
'reasoning': self.reasoning,
'question': self.question,
**self.props
}
def __repr__(self):
return f"Utterance(speaker='{self.speaker}'," \
f"text='{self.text}', uid={self.uid}," \
f"starttime={self.starttime}, endtime={self.endtime}, props={self.props})"
class Transcript:
def __init__(self, **kwargs):
self.utterances = []
self.params = kwargs
def add_utterance(self, utterance):
utterance.transcript = weakref.ref(self)
self.utterances.append(utterance)
def get_idx(self, idx):
if idx >= len(self.utterances):
return None
return self.utterances[idx]
def get_uid(self, uid):
for utt in self.utterances:
if utt.uid == uid:
return utt
return None
def length(self):
return len(self.utterances)
def to_dict(self):
return {
'utterances': [utterance.to_dict() for utterance in self.utterances],
**self.params
}
def __repr__(self):
return f"Transcript(utterances={self.utterances}, custom_params={self.params})"
class QuestionModel:
def __init__(self, device, tokenizer, input_builder, max_length=300, path=QUESTION_MODEL):
print("Loading models...")
self.device = device
self.tokenizer = tokenizer
self.input_builder = input_builder
self.max_length = max_length
self.model = MultiHeadModel.from_pretrained(path, head2size={"is_question": 2})
self.model.to(self.device)
def run_inference(self, transcript):
self.model.eval()
with torch.no_grad():
for i, utt in enumerate(transcript.utterances):
if "?" in utt.text:
utt.question = 1
else:
text = utt.get_clean_text(remove_punct=True)
instance = self.input_builder.build_inputs([], text,
max_length=self.max_length,
input_str=True)
output = self.get_prediction(instance)
print(output)
utt.question = np.argmax(output["is_question_logits"][0].tolist())
def get_prediction(self, instance):
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
for key in ["input_ids", "token_type_ids", "attention_mask"]:
instance[key] = torch.tensor(instance[key]).unsqueeze(0) # Batch size = 1
instance[key].to(self.device)
output = self.model(input_ids=instance["input_ids"],
attention_mask=instance["attention_mask"],
token_type_ids=instance["token_type_ids"],
return_pooler_output=False)
return output
class ReasoningModel:
def __init__(self, device, tokenizer, input_builder, max_length=128, path=REASONING_MODEL):
print("Loading models...")
self.device = device
self.tokenizer = tokenizer
self.input_builder = input_builder
self.max_length = max_length
self.model = BertForSequenceClassification.from_pretrained(path)
self.model.to(self.device)
def run_inference(self, transcript, min_num_words=8):
self.model.eval()
with torch.no_grad():
for i, utt in enumerate(transcript.utterances):
if utt.get_num_words() >= min_num_words:
instance = self.input_builder.build_inputs([], utt.text,
max_length=self.max_length,
input_str=True)
output = self.get_prediction(instance)
utt.reasoning = np.argmax(output["logits"][0].tolist())
def get_prediction(self, instance):
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
for key in ["input_ids", "token_type_ids", "attention_mask"]:
instance[key] = torch.tensor(instance[key]).unsqueeze(0) # Batch size = 1
instance[key].to(self.device)
output = self.model(input_ids=instance["input_ids"],
attention_mask=instance["attention_mask"],
token_type_ids=instance["token_type_ids"])
return output
class UptakeModel:
def __init__(self, device, tokenizer, input_builder, max_length=120, path=UPTAKE_MODEL):
print("Loading models...")
self.device = device
self.tokenizer = tokenizer
self.input_builder = input_builder
self.max_length = max_length
self.model = MultiHeadModel.from_pretrained(path, head2size={"nsp": 2})
self.model.to(self.device)
def run_inference(self, transcript, min_prev_words, uptake_speaker=None):
self.model.eval()
prev_num_words = 0
prev_utt = None
with torch.no_grad():
for i, utt in enumerate(transcript.utterances):
if ((uptake_speaker is None) or (utt.speaker == uptake_speaker)) and (prev_num_words >= min_prev_words):
textA = prev_utt.get_clean_text(remove_punct=False)
textB = utt.get_clean_text(remove_punct=False)
instance = self.input_builder.build_inputs([textA], textB,
max_length=self.max_length,
input_str=True)
output = self.get_prediction(instance)
utt.uptake = int(softmax(output["nsp_logits"][0].tolist())[1] > .8)
prev_num_words = utt.get_num_words()
prev_utt = utt
def get_prediction(self, instance):
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
for key in ["input_ids", "token_type_ids", "attention_mask"]:
instance[key] = torch.tensor(instance[key]).unsqueeze(0) # Batch size = 1
instance[key].to(self.device)
output = self.model(input_ids=instance["input_ids"],
attention_mask=instance["attention_mask"],
token_type_ids=instance["token_type_ids"],
return_pooler_output=False)
return output
class EndpointHandler():
def __init__(self):
print("Loading models...")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
self.input_builder = BertInputBuilder(tokenizer=self.tokenizer)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `list`):
List of dicts, where each dict represents an utterance; each utterance object must have a `speaker`,
`text` and `uid`and can include list of custom properties
parameters (:obj: `dict`)
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
# get inputs
utterances = data.pop("inputs", data)
params = data.pop("parameters", None)
print("EXAMPLES")
for utt in utterances[:3]:
print("speaker %s: %s" % (utt["speaker"], utt["text"]))
transcript = Transcript(filename=params.pop("filename", None))
for utt in utterances:
transcript.add_utterance(Utterance(**utt))
print("Running inference on %d examples..." % transcript.length())
# Uptake
uptake_model = UptakeModel(self.device, self.tokenizer, self.input_builder)
uptake_model.run_inference(transcript, min_prev_words=params['uptake_min_num_words'],
uptake_speaker=params.pop("uptake_speaker", None))
# Reasoning
reasoning_model = ReasoningModel(self.device, self.tokenizer, self.input_builder)
reasoning_model.run_inference(transcript)
# Question
question_model = QuestionModel(self.device, self.tokenizer, self.input_builder)
question_model.run_inference(transcript)
return transcript.to_dict()