ddemszky
commited on
Commit
·
91cb36e
1
Parent(s):
8b8145a
added custom handler
Browse files- __pycache__/handler.cpython-39.pyc +0 -0
- __pycache__/utils.cpython-39.pyc +0 -0
- handler.py +243 -0
- requirements.txt +6 -0
- test.py +22 -0
- utils.py +192 -0
__pycache__/handler.cpython-39.pyc
ADDED
Binary file (8.82 kB). View file
|
|
__pycache__/utils.cpython-39.pyc
ADDED
Binary file (6.53 kB). View file
|
|
handler.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from scipy.special import softmax
|
3 |
+
import numpy as np
|
4 |
+
import weakref
|
5 |
+
|
6 |
+
from utils import clean_str, clean_str_nopunct
|
7 |
+
import torch
|
8 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
9 |
+
from utils import MultiHeadModel, BertInputBuilder, get_num_words
|
10 |
+
|
11 |
+
UPTAKE_MODEL='ddemszky/uptake-model'
|
12 |
+
REASONING_MODEL ='ddemszky/student-reasoning'
|
13 |
+
QUESTION_MODEL ='ddemszky/question-detection'
|
14 |
+
|
15 |
+
class Utterance:
|
16 |
+
def __init__(self, speaker, text, uid=None,
|
17 |
+
transcript=None, starttime=None, endtime=None, **kwargs):
|
18 |
+
self.speaker = speaker
|
19 |
+
self.text = text
|
20 |
+
self.uid = uid
|
21 |
+
self.starttime = starttime
|
22 |
+
self.endtime = endtime
|
23 |
+
self.transcript = weakref.ref(transcript) if transcript else None
|
24 |
+
self.props = kwargs
|
25 |
+
|
26 |
+
self.uptake = None
|
27 |
+
self.reasoning = None
|
28 |
+
self.question = None
|
29 |
+
|
30 |
+
def get_clean_text(self, remove_punct=False):
|
31 |
+
if remove_punct:
|
32 |
+
return clean_str_nopunct(self.text)
|
33 |
+
return clean_str(self.text)
|
34 |
+
|
35 |
+
def get_num_words(self):
|
36 |
+
return get_num_words(self.text)
|
37 |
+
|
38 |
+
def to_dict(self):
|
39 |
+
return {
|
40 |
+
'speaker': self.speaker,
|
41 |
+
'text': self.text,
|
42 |
+
'uid': self.uid,
|
43 |
+
'starttime': self.starttime,
|
44 |
+
'endtime': self.endtime,
|
45 |
+
'uptake': self.uptake,
|
46 |
+
'reasoning': self.reasoning,
|
47 |
+
'question': self.question,
|
48 |
+
**self.props
|
49 |
+
}
|
50 |
+
|
51 |
+
def __repr__(self):
|
52 |
+
return f"Utterance(speaker='{self.speaker}'," \
|
53 |
+
f"text='{self.text}', uid={self.uid}," \
|
54 |
+
f"starttime={self.starttime}, endtime={self.endtime}, props={self.props})"
|
55 |
+
|
56 |
+
class Transcript:
|
57 |
+
def __init__(self, **kwargs):
|
58 |
+
self.utterances = []
|
59 |
+
self.params = kwargs
|
60 |
+
|
61 |
+
def add_utterance(self, utterance):
|
62 |
+
utterance.transcript = weakref.ref(self)
|
63 |
+
self.utterances.append(utterance)
|
64 |
+
|
65 |
+
def get_idx(self, idx):
|
66 |
+
if idx >= len(self.utterances):
|
67 |
+
return None
|
68 |
+
return self.utterances[idx]
|
69 |
+
|
70 |
+
def get_uid(self, uid):
|
71 |
+
for utt in self.utterances:
|
72 |
+
if utt.uid == uid:
|
73 |
+
return utt
|
74 |
+
return None
|
75 |
+
|
76 |
+
def length(self):
|
77 |
+
return len(self.utterances)
|
78 |
+
|
79 |
+
def to_dict(self):
|
80 |
+
return {
|
81 |
+
'utterances': [utterance.to_dict() for utterance in self.utterances],
|
82 |
+
**self.params
|
83 |
+
}
|
84 |
+
|
85 |
+
def __repr__(self):
|
86 |
+
return f"Transcript(utterances={self.utterances}, custom_params={self.params})"
|
87 |
+
|
88 |
+
class QuestionModel:
|
89 |
+
def __init__(self, device, tokenizer, input_builder, max_length=300, path=QUESTION_MODEL):
|
90 |
+
print("Loading models...")
|
91 |
+
self.device = device
|
92 |
+
self.tokenizer = tokenizer
|
93 |
+
self.input_builder = input_builder
|
94 |
+
self.max_length = max_length
|
95 |
+
self.model = MultiHeadModel.from_pretrained(path, head2size={"is_question": 2})
|
96 |
+
self.model.to(self.device)
|
97 |
+
|
98 |
+
|
99 |
+
def run_inference(self, transcript):
|
100 |
+
self.model.eval()
|
101 |
+
with torch.no_grad():
|
102 |
+
for i, utt in enumerate(transcript.utterances):
|
103 |
+
if "?" in utt.text:
|
104 |
+
utt.question = 1
|
105 |
+
else:
|
106 |
+
text = utt.get_clean_text(remove_punct=True)
|
107 |
+
instance = self.input_builder.build_inputs([], text,
|
108 |
+
max_length=self.max_length,
|
109 |
+
input_str=True)
|
110 |
+
output = self.get_prediction(instance)
|
111 |
+
print(output)
|
112 |
+
utt.question = np.argmax(output["is_question_logits"][0].tolist())
|
113 |
+
|
114 |
+
def get_prediction(self, instance):
|
115 |
+
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
|
116 |
+
for key in ["input_ids", "token_type_ids", "attention_mask"]:
|
117 |
+
instance[key] = torch.tensor(instance[key]).unsqueeze(0) # Batch size = 1
|
118 |
+
instance[key].to(self.device)
|
119 |
+
|
120 |
+
output = self.model(input_ids=instance["input_ids"],
|
121 |
+
attention_mask=instance["attention_mask"],
|
122 |
+
token_type_ids=instance["token_type_ids"],
|
123 |
+
return_pooler_output=False)
|
124 |
+
return output
|
125 |
+
|
126 |
+
class ReasoningModel:
|
127 |
+
def __init__(self, device, tokenizer, input_builder, max_length=128, path=REASONING_MODEL):
|
128 |
+
print("Loading models...")
|
129 |
+
self.device = device
|
130 |
+
self.tokenizer = tokenizer
|
131 |
+
self.input_builder = input_builder
|
132 |
+
self.max_length = max_length
|
133 |
+
self.model = BertForSequenceClassification.from_pretrained(path)
|
134 |
+
self.model.to(self.device)
|
135 |
+
|
136 |
+
def run_inference(self, transcript, min_num_words=8):
|
137 |
+
self.model.eval()
|
138 |
+
with torch.no_grad():
|
139 |
+
for i, utt in enumerate(transcript.utterances):
|
140 |
+
if utt.get_num_words() >= min_num_words:
|
141 |
+
instance = self.input_builder.build_inputs([], utt.text,
|
142 |
+
max_length=self.max_length,
|
143 |
+
input_str=True)
|
144 |
+
output = self.get_prediction(instance)
|
145 |
+
utt.reasoning = np.argmax(output["logits"][0].tolist())
|
146 |
+
|
147 |
+
def get_prediction(self, instance):
|
148 |
+
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
|
149 |
+
for key in ["input_ids", "token_type_ids", "attention_mask"]:
|
150 |
+
instance[key] = torch.tensor(instance[key]).unsqueeze(0) # Batch size = 1
|
151 |
+
instance[key].to(self.device)
|
152 |
+
|
153 |
+
output = self.model(input_ids=instance["input_ids"],
|
154 |
+
attention_mask=instance["attention_mask"],
|
155 |
+
token_type_ids=instance["token_type_ids"])
|
156 |
+
return output
|
157 |
+
|
158 |
+
class UptakeModel:
|
159 |
+
def __init__(self, device, tokenizer, input_builder, max_length=120, path=UPTAKE_MODEL):
|
160 |
+
print("Loading models...")
|
161 |
+
self.device = device
|
162 |
+
self.tokenizer = tokenizer
|
163 |
+
self.input_builder = input_builder
|
164 |
+
self.max_length = max_length
|
165 |
+
self.model = MultiHeadModel.from_pretrained(path, head2size={"nsp": 2})
|
166 |
+
self.model.to(self.device)
|
167 |
+
|
168 |
+
def run_inference(self, transcript, min_prev_words, uptake_speaker=None):
|
169 |
+
self.model.eval()
|
170 |
+
prev_num_words = 0
|
171 |
+
prev_utt = None
|
172 |
+
with torch.no_grad():
|
173 |
+
for i, utt in enumerate(transcript.utterances):
|
174 |
+
if ((uptake_speaker is None) or (utt.speaker == uptake_speaker)) and (prev_num_words >= min_prev_words):
|
175 |
+
textA = prev_utt.get_clean_text(remove_punct=False)
|
176 |
+
textB = utt.get_clean_text(remove_punct=False)
|
177 |
+
instance = self.input_builder.build_inputs([textA], textB,
|
178 |
+
max_length=self.max_length,
|
179 |
+
input_str=True)
|
180 |
+
output = self.get_prediction(instance)
|
181 |
+
|
182 |
+
utt.uptake = int(softmax(output["nsp_logits"][0].tolist())[1] > .8)
|
183 |
+
prev_num_words = utt.get_num_words()
|
184 |
+
prev_utt = utt
|
185 |
+
|
186 |
+
def get_prediction(self, instance):
|
187 |
+
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
|
188 |
+
for key in ["input_ids", "token_type_ids", "attention_mask"]:
|
189 |
+
instance[key] = torch.tensor(instance[key]).unsqueeze(0) # Batch size = 1
|
190 |
+
instance[key].to(self.device)
|
191 |
+
|
192 |
+
output = self.model(input_ids=instance["input_ids"],
|
193 |
+
attention_mask=instance["attention_mask"],
|
194 |
+
token_type_ids=instance["token_type_ids"],
|
195 |
+
return_pooler_output=False)
|
196 |
+
return output
|
197 |
+
|
198 |
+
|
199 |
+
class EndpointHandler():
|
200 |
+
def __init__(self):
|
201 |
+
print("Loading models...")
|
202 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
203 |
+
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
204 |
+
self.input_builder = BertInputBuilder(tokenizer=self.tokenizer)
|
205 |
+
|
206 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
207 |
+
"""
|
208 |
+
data args:
|
209 |
+
inputs (:obj: `list`):
|
210 |
+
List of dicts, where each dict represents an utterance; each utterance object must have a `speaker`,
|
211 |
+
`text` and `uid`and can include list of custom properties
|
212 |
+
parameters (:obj: `dict`)
|
213 |
+
Return:
|
214 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
215 |
+
"""
|
216 |
+
# get inputs
|
217 |
+
utterances = data.pop("inputs", data)
|
218 |
+
params = data.pop("parameters", None)
|
219 |
+
|
220 |
+
print("EXAMPLES")
|
221 |
+
for utt in utterances[:3]:
|
222 |
+
print("speaker %s: %s" % (utt["speaker"], utt["text"]))
|
223 |
+
|
224 |
+
transcript = Transcript(filename=params.pop("filename", None))
|
225 |
+
for utt in utterances:
|
226 |
+
transcript.add_utterance(Utterance(**utt))
|
227 |
+
|
228 |
+
print("Running inference on %d examples..." % transcript.length())
|
229 |
+
|
230 |
+
# Uptake
|
231 |
+
uptake_model = UptakeModel(self.device, self.tokenizer, self.input_builder)
|
232 |
+
uptake_model.run_inference(transcript, min_prev_words=params['uptake_min_num_words'],
|
233 |
+
uptake_speaker=params.pop("uptake_speaker", None))
|
234 |
+
|
235 |
+
# Reasoning
|
236 |
+
reasoning_model = ReasoningModel(self.device, self.tokenizer, self.input_builder)
|
237 |
+
reasoning_model.run_inference(transcript)
|
238 |
+
|
239 |
+
# Question
|
240 |
+
question_model = QuestionModel(self.device, self.tokenizer, self.input_builder)
|
241 |
+
question_model.run_inference(transcript)
|
242 |
+
|
243 |
+
return transcript.to_dict()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
clean-text==1.1.4
|
2 |
+
num2words==0.5.10
|
3 |
+
numpy==1.22.4
|
4 |
+
scipy==1.7.3
|
5 |
+
torch==1.10.2
|
6 |
+
transformers==4.25.1
|
test.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from handler import EndpointHandler
|
3 |
+
|
4 |
+
# init handler
|
5 |
+
my_handler = EndpointHandler()
|
6 |
+
|
7 |
+
# prepare sample payload
|
8 |
+
example = {
|
9 |
+
"inputs": [
|
10 |
+
{"uid": "1", "speaker": "Alice", "text": "How much is the fish?" },
|
11 |
+
{"uid": "2", "speaker": "Bob", "text": "I do not know about the fish. Because you put a long side and it’s a long side. What do you think." },
|
12 |
+
{"uid": "3", "speaker": "Alice", "text": "OK, thank you Bob." },
|
13 |
+
],
|
14 |
+
"parameters": {
|
15 |
+
"uptake_min_num_words": 5,
|
16 |
+
"uptake_speaker": "Bob",
|
17 |
+
"filename": "sample.csv",
|
18 |
+
}
|
19 |
+
}
|
20 |
+
|
21 |
+
# test the handler
|
22 |
+
print(my_handler(example))
|
utils.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers.models.bert.modeling_bert import BertModel, BertPreTrainedModel
|
3 |
+
from torch import nn
|
4 |
+
from itertools import chain
|
5 |
+
from torch.nn import MSELoss, CrossEntropyLoss
|
6 |
+
from cleantext import clean
|
7 |
+
from num2words import num2words
|
8 |
+
import re
|
9 |
+
import string
|
10 |
+
|
11 |
+
punct_chars = list((set(string.punctuation) | {'’', '‘', '–', '—', '~', '|', '“', '”', '…', "'", "`", '_'}))
|
12 |
+
punct_chars.sort()
|
13 |
+
punctuation = ''.join(punct_chars)
|
14 |
+
replace = re.compile('[%s]' % re.escape(punctuation))
|
15 |
+
|
16 |
+
def get_num_words(text):
|
17 |
+
if not isinstance(text, str):
|
18 |
+
print("%s is not a string" % text)
|
19 |
+
text = replace.sub(' ', text)
|
20 |
+
text = re.sub(r'\s+', ' ', text)
|
21 |
+
text = text.strip()
|
22 |
+
text = re.sub(r'\[.+\]', " ", text)
|
23 |
+
return len(text.split())
|
24 |
+
|
25 |
+
def number_to_words(num):
|
26 |
+
try:
|
27 |
+
return num2words(re.sub(",", "", num))
|
28 |
+
except:
|
29 |
+
return num
|
30 |
+
|
31 |
+
|
32 |
+
clean_str = lambda s: clean(s,
|
33 |
+
fix_unicode=True, # fix various unicode errors
|
34 |
+
to_ascii=True, # transliterate to closest ASCII representation
|
35 |
+
lower=True, # lowercase text
|
36 |
+
no_line_breaks=True, # fully strip line breaks as opposed to only normalizing them
|
37 |
+
no_urls=True, # replace all URLs with a special token
|
38 |
+
no_emails=True, # replace all email addresses with a special token
|
39 |
+
no_phone_numbers=True, # replace all phone numbers with a special token
|
40 |
+
no_numbers=True, # replace all numbers with a special token
|
41 |
+
no_digits=False, # replace all digits with a special token
|
42 |
+
no_currency_symbols=False, # replace all currency symbols with a special token
|
43 |
+
no_punct=False, # fully remove punctuation
|
44 |
+
replace_with_url="<URL>",
|
45 |
+
replace_with_email="<EMAIL>",
|
46 |
+
replace_with_phone_number="<PHONE>",
|
47 |
+
replace_with_number=lambda m: number_to_words(m.group()),
|
48 |
+
replace_with_digit="0",
|
49 |
+
replace_with_currency_symbol="<CUR>",
|
50 |
+
lang="en"
|
51 |
+
)
|
52 |
+
|
53 |
+
clean_str_nopunct = lambda s: clean(s,
|
54 |
+
fix_unicode=True, # fix various unicode errors
|
55 |
+
to_ascii=True, # transliterate to closest ASCII representation
|
56 |
+
lower=True, # lowercase text
|
57 |
+
no_line_breaks=True, # fully strip line breaks as opposed to only normalizing them
|
58 |
+
no_urls=True, # replace all URLs with a special token
|
59 |
+
no_emails=True, # replace all email addresses with a special token
|
60 |
+
no_phone_numbers=True, # replace all phone numbers with a special token
|
61 |
+
no_numbers=True, # replace all numbers with a special token
|
62 |
+
no_digits=False, # replace all digits with a special token
|
63 |
+
no_currency_symbols=False, # replace all currency symbols with a special token
|
64 |
+
no_punct=True, # fully remove punctuation
|
65 |
+
replace_with_url="<URL>",
|
66 |
+
replace_with_email="<EMAIL>",
|
67 |
+
replace_with_phone_number="<PHONE>",
|
68 |
+
replace_with_number=lambda m: number_to_words(m.group()),
|
69 |
+
replace_with_digit="0",
|
70 |
+
replace_with_currency_symbol="<CUR>",
|
71 |
+
lang="en"
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
class MultiHeadModel(BertPreTrainedModel):
|
77 |
+
"""Pre-trained BERT model that uses our loss functions"""
|
78 |
+
|
79 |
+
def __init__(self, config, head2size):
|
80 |
+
super(MultiHeadModel, self).__init__(config, head2size)
|
81 |
+
config.num_labels = 1
|
82 |
+
self.bert = BertModel(config)
|
83 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
84 |
+
module_dict = {}
|
85 |
+
for head_name, num_labels in head2size.items():
|
86 |
+
module_dict[head_name] = nn.Linear(config.hidden_size, num_labels)
|
87 |
+
self.heads = nn.ModuleDict(module_dict)
|
88 |
+
|
89 |
+
self.init_weights()
|
90 |
+
|
91 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None,
|
92 |
+
head2labels=None, return_pooler_output=False, head2mask=None,
|
93 |
+
nsp_loss_weights=None):
|
94 |
+
|
95 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
96 |
+
|
97 |
+
# Get logits
|
98 |
+
output = self.bert(
|
99 |
+
input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask,
|
100 |
+
output_attentions=False, output_hidden_states=False, return_dict=True)
|
101 |
+
pooled_output = self.dropout(output["pooler_output"]).to(device)
|
102 |
+
|
103 |
+
head2logits = {}
|
104 |
+
return_dict = {}
|
105 |
+
for head_name, head in self.heads.items():
|
106 |
+
head2logits[head_name] = self.heads[head_name](pooled_output)
|
107 |
+
head2logits[head_name] = head2logits[head_name].float()
|
108 |
+
return_dict[head_name + "_logits"] = head2logits[head_name]
|
109 |
+
|
110 |
+
|
111 |
+
if head2labels is not None:
|
112 |
+
for head_name, labels in head2labels.items():
|
113 |
+
num_classes = head2logits[head_name].shape[1]
|
114 |
+
|
115 |
+
# Regression (e.g. for politeness)
|
116 |
+
if num_classes == 1:
|
117 |
+
|
118 |
+
# Only consider positive examples
|
119 |
+
if head2mask is not None and head_name in head2mask:
|
120 |
+
num_positives = head2labels[head2mask[head_name]].sum() # use certain labels as mask
|
121 |
+
if num_positives == 0:
|
122 |
+
return_dict[head_name + "_loss"] = torch.tensor([0]).to(device)
|
123 |
+
else:
|
124 |
+
loss_fct = MSELoss(reduction='none')
|
125 |
+
loss = loss_fct(head2logits[head_name].view(-1), labels.float().view(-1))
|
126 |
+
return_dict[head_name + "_loss"] = loss.dot(head2labels[head2mask[head_name]].float().view(-1)) / num_positives
|
127 |
+
else:
|
128 |
+
loss_fct = MSELoss()
|
129 |
+
return_dict[head_name + "_loss"] = loss_fct(head2logits[head_name].view(-1), labels.float().view(-1))
|
130 |
+
else:
|
131 |
+
loss_fct = CrossEntropyLoss(weight=nsp_loss_weights.float())
|
132 |
+
return_dict[head_name + "_loss"] = loss_fct(head2logits[head_name], labels.view(-1))
|
133 |
+
|
134 |
+
|
135 |
+
if return_pooler_output:
|
136 |
+
return_dict["pooler_output"] = output["pooler_output"]
|
137 |
+
|
138 |
+
return return_dict
|
139 |
+
|
140 |
+
class InputBuilder(object):
|
141 |
+
"""Base class for building inputs from segments."""
|
142 |
+
|
143 |
+
def __init__(self, tokenizer):
|
144 |
+
self.tokenizer = tokenizer
|
145 |
+
self.mask = [tokenizer.mask_token_id]
|
146 |
+
|
147 |
+
def build_inputs(self, history, reply, max_length):
|
148 |
+
raise NotImplementedError
|
149 |
+
|
150 |
+
def mask_seq(self, sequence, seq_id):
|
151 |
+
sequence[seq_id] = self.mask
|
152 |
+
return sequence
|
153 |
+
|
154 |
+
@classmethod
|
155 |
+
def _combine_sequence(self, history, reply, max_length, flipped=False):
|
156 |
+
# Trim all inputs to max_length
|
157 |
+
history = [s[:max_length] for s in history]
|
158 |
+
reply = reply[:max_length]
|
159 |
+
if flipped:
|
160 |
+
return [reply] + history
|
161 |
+
return history + [reply]
|
162 |
+
|
163 |
+
|
164 |
+
class BertInputBuilder(InputBuilder):
|
165 |
+
"""Processor for BERT inputs"""
|
166 |
+
|
167 |
+
def __init__(self, tokenizer):
|
168 |
+
InputBuilder.__init__(self, tokenizer)
|
169 |
+
self.cls = [tokenizer.cls_token_id]
|
170 |
+
self.sep = [tokenizer.sep_token_id]
|
171 |
+
self.model_inputs = ["input_ids", "token_type_ids", "attention_mask"]
|
172 |
+
self.padded_inputs = ["input_ids", "token_type_ids"]
|
173 |
+
self.flipped = False
|
174 |
+
|
175 |
+
|
176 |
+
def build_inputs(self, history, reply, max_length, input_str=True):
|
177 |
+
"""See base class."""
|
178 |
+
if input_str:
|
179 |
+
history = [self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(t)) for t in history]
|
180 |
+
reply = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(reply))
|
181 |
+
sequence = self._combine_sequence(history, reply, max_length, self.flipped)
|
182 |
+
sequence = [s + self.sep for s in sequence]
|
183 |
+
sequence[0] = self.cls + sequence[0]
|
184 |
+
|
185 |
+
instance = {}
|
186 |
+
instance["input_ids"] = list(chain(*sequence))
|
187 |
+
last_speaker = 0
|
188 |
+
other_speaker = 1
|
189 |
+
seq_length = len(sequence)
|
190 |
+
instance["token_type_ids"] = [last_speaker if ((seq_length - i) % 2 == 1) else other_speaker
|
191 |
+
for i, s in enumerate(sequence) for _ in s]
|
192 |
+
return instance
|