File size: 9,744 Bytes
91cb36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from typing import Dict, List, Any
from scipy.special import softmax
import numpy as np
import weakref

from utils import clean_str, clean_str_nopunct
import torch
from transformers import BertTokenizer, BertForSequenceClassification
from utils import MultiHeadModel, BertInputBuilder, get_num_words

UPTAKE_MODEL='ddemszky/uptake-model'
REASONING_MODEL ='ddemszky/student-reasoning'
QUESTION_MODEL ='ddemszky/question-detection'

class Utterance:
    def __init__(self, speaker, text, uid=None,
                 transcript=None, starttime=None, endtime=None, **kwargs):
        self.speaker = speaker
        self.text = text
        self.uid = uid
        self.starttime = starttime
        self.endtime = endtime
        self.transcript = weakref.ref(transcript) if transcript else None
        self.props = kwargs

        self.uptake = None
        self.reasoning = None
        self.question = None

    def get_clean_text(self, remove_punct=False):
        if remove_punct:
            return clean_str_nopunct(self.text)
        return clean_str(self.text)

    def get_num_words(self):
        return get_num_words(self.text)

    def to_dict(self):
        return {
            'speaker': self.speaker,
            'text': self.text,
            'uid': self.uid,
            'starttime': self.starttime,
            'endtime': self.endtime,
            'uptake': self.uptake,
            'reasoning': self.reasoning,
            'question':  self.question,
            **self.props
        }

    def __repr__(self):
        return f"Utterance(speaker='{self.speaker}'," \
               f"text='{self.text}', uid={self.uid}," \
               f"starttime={self.starttime}, endtime={self.endtime}, props={self.props})"

class Transcript:
    def __init__(self, **kwargs):
        self.utterances = []
        self.params = kwargs

    def add_utterance(self, utterance):
        utterance.transcript = weakref.ref(self)
        self.utterances.append(utterance)

    def get_idx(self, idx):
        if idx >= len(self.utterances):
            return None
        return self.utterances[idx]

    def get_uid(self, uid):
        for utt in self.utterances:
            if utt.uid == uid:
                return utt
        return None

    def length(self):
        return len(self.utterances)

    def to_dict(self):
        return {
            'utterances': [utterance.to_dict() for utterance in self.utterances],
            **self.params
        }

    def __repr__(self):
        return f"Transcript(utterances={self.utterances}, custom_params={self.params})"

class QuestionModel:
    def __init__(self, device, tokenizer, input_builder, max_length=300, path=QUESTION_MODEL):
        print("Loading models...")
        self.device = device
        self.tokenizer = tokenizer
        self.input_builder = input_builder
        self.max_length = max_length
        self.model = MultiHeadModel.from_pretrained(path, head2size={"is_question": 2})
        self.model.to(self.device)


    def run_inference(self, transcript):
        self.model.eval()
        with torch.no_grad():
            for i, utt in enumerate(transcript.utterances):
                if "?" in utt.text:
                    utt.question = 1
                else:
                    text = utt.get_clean_text(remove_punct=True)
                    instance = self.input_builder.build_inputs([], text,
                                                               max_length=self.max_length,
                                                               input_str=True)
                    output = self.get_prediction(instance)
                    print(output)
                    utt.question = np.argmax(output["is_question_logits"][0].tolist())

    def get_prediction(self, instance):
        instance["attention_mask"] = [[1] * len(instance["input_ids"])]
        for key in ["input_ids", "token_type_ids", "attention_mask"]:
            instance[key] = torch.tensor(instance[key]).unsqueeze(0)  # Batch size = 1
            instance[key].to(self.device)

        output = self.model(input_ids=instance["input_ids"],
                            attention_mask=instance["attention_mask"],
                            token_type_ids=instance["token_type_ids"],
                            return_pooler_output=False)
        return output

class ReasoningModel:
    def __init__(self, device, tokenizer, input_builder, max_length=128, path=REASONING_MODEL):
        print("Loading models...")
        self.device = device
        self.tokenizer = tokenizer
        self.input_builder = input_builder
        self.max_length = max_length
        self.model = BertForSequenceClassification.from_pretrained(path)
        self.model.to(self.device)

    def run_inference(self, transcript, min_num_words=8):
        self.model.eval()
        with torch.no_grad():
            for i, utt in enumerate(transcript.utterances):
                if utt.get_num_words() >= min_num_words:
                    instance = self.input_builder.build_inputs([], utt.text,
                                                               max_length=self.max_length,
                                                               input_str=True)
                    output = self.get_prediction(instance)
                    utt.reasoning = np.argmax(output["logits"][0].tolist())

    def get_prediction(self, instance):
        instance["attention_mask"] = [[1] * len(instance["input_ids"])]
        for key in ["input_ids", "token_type_ids", "attention_mask"]:
            instance[key] = torch.tensor(instance[key]).unsqueeze(0)  # Batch size = 1
            instance[key].to(self.device)

        output = self.model(input_ids=instance["input_ids"],
                            attention_mask=instance["attention_mask"],
                            token_type_ids=instance["token_type_ids"])
        return output

class UptakeModel:
    def __init__(self, device, tokenizer, input_builder, max_length=120, path=UPTAKE_MODEL):
        print("Loading models...")
        self.device = device
        self.tokenizer = tokenizer
        self.input_builder = input_builder
        self.max_length = max_length
        self.model = MultiHeadModel.from_pretrained(path, head2size={"nsp": 2})
        self.model.to(self.device)

    def run_inference(self, transcript, min_prev_words, uptake_speaker=None):
        self.model.eval()
        prev_num_words = 0
        prev_utt = None
        with torch.no_grad():
            for i, utt in enumerate(transcript.utterances):
                if ((uptake_speaker is None) or (utt.speaker == uptake_speaker)) and (prev_num_words >= min_prev_words):
                    textA = prev_utt.get_clean_text(remove_punct=False)
                    textB = utt.get_clean_text(remove_punct=False)
                    instance = self.input_builder.build_inputs([textA], textB,
                                                               max_length=self.max_length,
                                                               input_str=True)
                    output = self.get_prediction(instance)

                    utt.uptake = int(softmax(output["nsp_logits"][0].tolist())[1] > .8)
                prev_num_words = utt.get_num_words()
                prev_utt = utt

    def get_prediction(self, instance):
        instance["attention_mask"] = [[1] * len(instance["input_ids"])]
        for key in ["input_ids", "token_type_ids", "attention_mask"]:
            instance[key] = torch.tensor(instance[key]).unsqueeze(0)  # Batch size = 1
            instance[key].to(self.device)

        output = self.model(input_ids=instance["input_ids"],
                            attention_mask=instance["attention_mask"],
                            token_type_ids=instance["token_type_ids"],
                            return_pooler_output=False)
        return output


class EndpointHandler():
    def __init__(self):
        print("Loading models...")
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
        self.input_builder = BertInputBuilder(tokenizer=self.tokenizer)

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
       data args:
            inputs (:obj: `list`):
            List of dicts, where each dict represents an utterance; each utterance object must have a `speaker`,
            `text` and `uid`and can include list of custom properties
            parameters (:obj: `dict`)
       Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """
        # get inputs
        utterances = data.pop("inputs", data)
        params = data.pop("parameters", None)

        print("EXAMPLES")
        for utt in utterances[:3]:
            print("speaker %s: %s" % (utt["speaker"], utt["text"]))

        transcript = Transcript(filename=params.pop("filename", None))
        for utt in utterances:
            transcript.add_utterance(Utterance(**utt))

        print("Running inference on %d examples..." % transcript.length())

        # Uptake
        uptake_model = UptakeModel(self.device, self.tokenizer, self.input_builder)
        uptake_model.run_inference(transcript, min_prev_words=params['uptake_min_num_words'],
                                   uptake_speaker=params.pop("uptake_speaker", None))

        # Reasoning
        reasoning_model = ReasoningModel(self.device, self.tokenizer, self.input_builder)
        reasoning_model.run_inference(transcript)

        # Question
        question_model = QuestionModel(self.device, self.tokenizer, self.input_builder)
        question_model.run_inference(transcript)

        return transcript.to_dict()