edu-modernbert / README.md
staghado's picture
Training in progress, step 27000
75164bc verified
|
raw
history blame
3.23 kB
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: edu-modernbert
    results: []

edu-modernbert

This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2864
  • Precision: 0.5389
  • Recall: 0.3949
  • F1: 0.4305
  • Accuracy: 0.6820
  • Binary Precision: 0.7559
  • Binary Recall: 0.4496
  • Binary F1: 0.5638
  • Binary Accuracy: 0.9373

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1024
  • eval_batch_size: 512
  • seed: 0
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Binary Precision Binary Recall Binary F1 Binary Accuracy
No log 0 0 2.4591 0.1116 0.1645 0.0484 0.1386 0.0 0.0 0.0 0.9098
0.3196 2.4331 1000 0.3097 0.5201 0.3691 0.3946 0.6587 0.7614 0.3580 0.4870 0.9320
0.3064 4.8662 2000 0.3067 0.5273 0.3882 0.4154 0.6599 0.7391 0.4375 0.5496 0.9353
0.3088 7.2993 3000 0.2951 0.5353 0.3833 0.4169 0.6744 0.7656 0.4007 0.5261 0.9349
0.2991 9.7324 4000 0.2975 0.5421 0.3921 0.4234 0.6699 0.7316 0.4643 0.5681 0.9363
0.2957 12.1655 5000 0.2920 0.5362 0.3859 0.4207 0.6813 0.7811 0.3953 0.5249 0.9355
0.2932 14.5985 6000 0.2881 0.5364 0.3946 0.4298 0.6824 0.7591 0.4351 0.5532 0.9366
0.2862 17.0316 7000 0.2876 0.5411 0.3850 0.4213 0.6829 0.7713 0.4104 0.5358 0.9359
0.2894 19.4647 8000 0.2864 0.5389 0.3949 0.4305 0.6820 0.7559 0.4496 0.5638 0.9373

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0