stablelm-zephyr-3b / README.md
pvduy's picture
Update README.md
e56b02a
|
raw
history blame
7.65 kB
metadata
datasets:
  - HuggingFaceH4/ultrachat_200k
  - HuggingFaceH4/ultrafeedback_binarized
  - meta-math/MetaMathQA
  - WizardLM/WizardLM_evol_instruct_V2_196k
  - Intel/orca_dpo_pairs
language:
  - en
tags:
  - causal-lm
extra_gated_fields:
  Name: text
  Email: text
  Country: text
  Organization or Affiliation: text
  I ALLOW Stability AI to email me about new model releases: checkbox

Stable Zephyr 3B

Model Description

Stable Zephyr 3B is a 3 billion parameter instruction tuned inspired by HugginFaceH4's Zephyr 7B training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using Direct Preference Optimization (DPO), evaluation for this model based on MT Bench and Alpaca Benchmark

Usage

Get started generating text with Stable Zephyr 3B by using the following code snippet:

from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-zephyr-3b-dpo")
model = AutoModelForCausalLM.from_pretrained(
  "stabilityai/stable-zephyr-3b-dpo",
  trust_remote_code=True,
  torch_dtype="auto",
)
model.cuda()
prompt = "<|user|>\nIn the field of quantum physics, what is superposition, and how does it relate to the phenomenon of quantum entanglement?<|endoftext|>\n<|assistant|>\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
tokens = model.generate(
  **inputs,
  max_new_tokens=1024,
  temperature=0.7,
  top_p=0.95,
  do_sample=True,
)
print(tokenizer.decode(tokens[0], skip_special_tokens=True))

Model Details

Training Dataset

The dataset is comprised of a mixture of open datasets large-scale datasets available on the HuggingFace Hub:

  1. SFT Datasets
  • HuggingFaceH4/ultrachat_200k
  • meta-math/MetaMathQA
  • Wizard Dataset
  • Open-Orca/SlimOrca
  1. Preference Datasets:
  • HuggingFaceH4/ultrafeedback_binarized
  • Intel/orca_dpo_pairs

Training Procedure

Performance

image/png

Model Size Alignment MT-Bench (score) AlpacaEval (win rate %)
Stable Zephyr 3B 🪁 3B DPO 6.64 76.00
Stable Zephyr (SFT only) 3B SFT 6.04 71.15
MPT-Chat 7B dSFT 5.42 -
Xwin-LMv0.1 7B dPPO 6.19 87.83
Mistral-Instructv0.1 7B - 6.84 -
Zephyr-7b-α 7B dDPO 6.88 -
Zephyr-7b-β 7B dDPO 7.34 90.60
Falcon-Instruct 40B dSFT 5.17 45.71
Guanaco 65B SFT 6.41 71.80
Llama2-Chat 70B RLHF 6.86 92.66
Vicuna v1.3 33B dSFT 7.12 88.99
WizardLM v1.0 70B dSFT 7.71 -
Xwin-LM v0.1 70B dPPO - 95.57
GPT-3.5-turbo - RLHF 7.94 89.37
Claude 2 - RLHF 8.06 91.36
GPT-4 - RLHF 8.99 95.28

Other benchmark:

Metric Value
ARC (25-shot) 0.47
HellaSwag (10-shot) 0.742
MMLU (5-shot)
TruthfulQA (0-shot)
Winogrande (5-shot) 0.655
GSM8K (5-shot) 0.423
  • BigBench: 0.3526.
Task Version Metric Value Stderr
bigbench_causal_judgement 0 multiple_choice_grade 0.5316 0.0363
bigbench_date_understanding 0 multiple_choice_grade 0.4363 0.0259
bigbench_disambiguation_qa 0 multiple_choice_grade 0.3217 0.0291
bigbench_dyck_languages 0 multiple_choice_grade 0.1450 0.0111
bigbench_formal_fallacies_syllogisms_negation 0 multiple_choice_grade 0.4982 0.0042
bigbench_geometric_shapes 0 multiple_choice_grade 0.1086 0.0164
bigbench_hyperbaton 0 exact_str_match 0.0000 0.0000
bigbench_logical_deduction_five_objects 0 multiple_choice_grade 0.5232 0.0022
bigbench_logical_deduction_seven_objects 0 multiple_choice_grade 0.2480 0.0193
bigbench_logical_deduction_three_objects 0 multiple_choice_grade 0.1814 0.0146
bigbench_movie_recommendation 0 multiple_choice_grade 0.4067 0.0284
bigbench_navigate 0 multiple_choice_grade 0.2580 0.0196
bigbench_reasoning_about_colored_objects 0 multiple_choice_grade 0.5990 0.0155
bigbench_ruin_names 0 multiple_choice_grade 0.4370 0.0111
bigbench_salient_translation_error_detection 0 multiple_choice_grade 0.3951 0.0231
bigbench_snarks 0 multiple_choice_grade 0.2265 0.0133
bigbench_sports_understanding 0 multiple_choice_grade 0.6464 0.0356
bigbench_temporal_sequences 0 multiple_choice_grade 0.5091 0.0159
bigbench_tracking_shuffled_objects_five_objects 0 multiple_choice_grade 0.2680 0.0140
bigbench_tracking_shuffled_objects_seven_objects 0 multiple_choice_grade 0.1856 0.0110
bigbench_tracking_shuffled_objects_three_objects 0 multiple_choice_grade 0.1269 0.0080

Training Infrastructure

  • Hardware: Stable Zephyr 3B was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
  • Code Base: We use our internal script for SFT steps and used HuggingFace Alignment Handbook script for DPO training.

Use and Limitations

Intended Use

The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications.

Limitations and Bias

​ As a base model, this model may exhibit unreliable, unsafe, or other undesirable behaviors that must be corrected through evaluation and fine-tuning prior to deployment. The pre-training dataset may have contained offensive or inappropriate content, even after applying data cleansing filters, which can be reflected in the model-generated text. We recommend that users exercise caution when using these models in production systems. Do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.