wav2vec2-xls-r-timit-trainer
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1064
- Wer: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.5537 | 4.03 | 500 | 0.6078 | 1.0 |
0.5444 | 8.06 | 1000 | 0.4990 | 0.9994 |
0.3744 | 12.1 | 1500 | 0.5530 | 1.0 |
0.2863 | 16.13 | 2000 | 0.6401 | 1.0 |
0.2357 | 20.16 | 2500 | 0.6485 | 1.0 |
0.1933 | 24.19 | 3000 | 0.7448 | 0.9994 |
0.162 | 28.22 | 3500 | 0.7502 | 1.0 |
0.1325 | 32.26 | 4000 | 0.7801 | 1.0 |
0.1169 | 36.29 | 4500 | 0.8334 | 1.0 |
0.1031 | 40.32 | 5000 | 0.8269 | 1.0 |
0.0913 | 44.35 | 5500 | 0.8432 | 1.0 |
0.0793 | 48.39 | 6000 | 0.8738 | 1.0 |
0.0694 | 52.42 | 6500 | 0.8897 | 1.0 |
0.0613 | 56.45 | 7000 | 0.8966 | 1.0 |
0.0548 | 60.48 | 7500 | 0.9398 | 1.0 |
0.0444 | 64.51 | 8000 | 0.9548 | 1.0 |
0.0386 | 68.55 | 8500 | 0.9647 | 1.0 |
0.0359 | 72.58 | 9000 | 0.9901 | 1.0 |
0.0299 | 76.61 | 9500 | 1.0151 | 1.0 |
0.0259 | 80.64 | 10000 | 1.0526 | 1.0 |
0.022 | 84.67 | 10500 | 1.0754 | 1.0 |
0.0189 | 88.71 | 11000 | 1.0688 | 1.0 |
0.0161 | 92.74 | 11500 | 1.0914 | 1.0 |
0.0138 | 96.77 | 12000 | 1.1064 | 1.0 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.