COPAS-mms1ball-Nov28
This model is a fine-tuned version of facebook/mms-1b-all on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.7926
- Wer: 0.9939
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 3
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
41.8398 | 0.2 | 100 | 37.3207 | 1.0 |
35.3547 | 0.4 | 200 | 27.8741 | 1.0 |
24.7565 | 0.6 | 300 | 19.3606 | 1.0 |
17.5639 | 0.8 | 400 | 12.4668 | 1.0 |
11.4454 | 1.0 | 500 | 8.1410 | 1.0 |
7.2036 | 1.2 | 600 | 6.0696 | 1.0 |
5.8017 | 1.4 | 700 | 5.3140 | 1.0 |
5.1698 | 1.6 | 800 | 5.0560 | 1.0 |
5.0254 | 1.8 | 900 | 4.9179 | 1.0 |
4.905 | 2.0 | 1000 | 4.8243 | 1.0 |
4.7647 | 2.2 | 1100 | 4.7402 | 1.0 |
4.736 | 2.4 | 1200 | 4.6689 | 1.0 |
4.6916 | 2.6 | 1300 | 4.6021 | 1.0 |
4.5545 | 2.8 | 1400 | 4.5514 | 1.0 |
4.5882 | 3.0 | 1500 | 4.5018 | 1.0 |
4.5573 | 3.2 | 1600 | 4.4525 | 1.0 |
4.4508 | 3.4 | 1700 | 4.4071 | 1.0 |
4.369 | 3.6 | 1800 | 4.3695 | 1.0 |
4.3941 | 3.8 | 1900 | 4.3237 | 1.0 |
4.3409 | 4.0 | 2000 | 4.2806 | 1.0 |
4.3205 | 4.2 | 2100 | 4.2383 | 1.0 |
4.2341 | 4.4 | 2200 | 4.1957 | 1.0 |
4.225 | 4.6 | 2300 | 4.1566 | 1.0 |
4.2211 | 4.8 | 2400 | 4.1210 | 1.0 |
4.1923 | 5.0 | 2500 | 4.0818 | 1.0 |
4.1785 | 5.2 | 2600 | 4.0491 | 1.0 |
4.1258 | 5.4 | 2700 | 4.0162 | 1.0 |
4.058 | 5.6 | 2800 | 3.9873 | 1.0 |
4.0715 | 5.8 | 2900 | 3.9629 | 1.0 |
4.0675 | 6.0 | 3000 | 3.9299 | 1.0 |
4.0338 | 6.2 | 3100 | 3.9041 | 1.0 |
3.9778 | 6.4 | 3200 | 3.8747 | 1.0 |
3.9507 | 6.6 | 3300 | 3.8510 | 0.9998 |
3.9829 | 6.8 | 3400 | 3.8248 | 0.9998 |
3.9373 | 7.0 | 3500 | 3.8036 | 0.9998 |
3.9433 | 7.2 | 3600 | 3.7812 | 0.9998 |
3.8741 | 7.4 | 3700 | 3.7618 | 0.9996 |
3.9197 | 7.6 | 3800 | 3.7420 | 0.9996 |
3.8497 | 7.8 | 3900 | 3.7223 | 0.9996 |
3.8934 | 8.0 | 4000 | 3.7031 | 0.9996 |
3.8427 | 8.2 | 4100 | 3.6863 | 0.9998 |
3.7761 | 8.4 | 4200 | 3.6698 | 0.9992 |
3.8544 | 8.6 | 4300 | 3.6574 | 0.9992 |
3.7864 | 8.8 | 4400 | 3.6425 | 0.9987 |
3.7913 | 9.0 | 4500 | 3.6284 | 0.9985 |
3.8103 | 9.2 | 4600 | 3.6162 | 0.9983 |
3.813 | 9.4 | 4700 | 3.6125 | 0.9985 |
3.7552 | 9.6 | 4800 | 3.5955 | 0.9983 |
3.744 | 9.8 | 4900 | 3.5832 | 0.9983 |
3.7656 | 10.0 | 5000 | 3.5749 | 0.9983 |
3.7119 | 10.2 | 5100 | 3.5686 | 0.9979 |
3.7246 | 10.4 | 5200 | 3.5613 | 0.9979 |
3.6999 | 10.6 | 5300 | 3.5483 | 0.9979 |
3.6942 | 10.8 | 5400 | 3.5395 | 0.9979 |
3.7076 | 11.0 | 5500 | 3.5338 | 0.9979 |
3.6577 | 11.2 | 5600 | 3.5219 | 0.9973 |
3.6771 | 11.4 | 5700 | 3.5147 | 0.9968 |
3.6948 | 11.6 | 5800 | 3.5055 | 0.9966 |
3.6699 | 11.8 | 5900 | 3.4969 | 0.9970 |
3.6306 | 12.0 | 6000 | 3.4868 | 0.9968 |
3.6393 | 12.2 | 6100 | 3.4800 | 0.9966 |
3.6745 | 12.4 | 6200 | 3.4712 | 0.9964 |
3.6641 | 12.6 | 6300 | 3.4659 | 0.9962 |
3.6167 | 12.8 | 6400 | 3.4595 | 0.9962 |
3.5831 | 13.0 | 6500 | 3.4537 | 0.9968 |
3.614 | 13.2 | 6600 | 3.4478 | 0.9966 |
3.6363 | 13.4 | 6700 | 3.4400 | 0.9966 |
3.6048 | 13.6 | 6800 | 3.4337 | 0.9966 |
3.5488 | 13.8 | 6900 | 3.4302 | 0.9966 |
3.5874 | 14.0 | 7000 | 3.4221 | 0.9964 |
3.5673 | 14.2 | 7100 | 3.4161 | 0.9962 |
3.5918 | 14.4 | 7200 | 3.4074 | 0.9964 |
3.6221 | 14.6 | 7300 | 3.4017 | 0.9964 |
3.516 | 14.8 | 7400 | 3.3931 | 0.9962 |
3.5529 | 15.0 | 7500 | 3.3872 | 0.9960 |
3.5173 | 15.2 | 7600 | 3.3806 | 0.9962 |
3.5608 | 15.4 | 7700 | 3.3721 | 0.9962 |
3.6101 | 15.6 | 7800 | 3.3639 | 0.9960 |
3.546 | 15.8 | 7900 | 3.3600 | 0.9958 |
3.481 | 16.0 | 8000 | 3.3549 | 0.9956 |
3.5324 | 16.2 | 8100 | 3.3471 | 0.9958 |
3.48 | 16.4 | 8200 | 3.3426 | 0.9962 |
3.5563 | 16.6 | 8300 | 3.3362 | 0.9956 |
3.5228 | 16.8 | 8400 | 3.3274 | 0.9949 |
3.4865 | 17.0 | 8500 | 3.3205 | 0.9954 |
3.5468 | 17.2 | 8600 | 3.3145 | 0.9962 |
3.4576 | 17.4 | 8700 | 3.3095 | 0.9962 |
3.4646 | 17.6 | 8800 | 3.3037 | 0.9964 |
3.4869 | 17.8 | 8900 | 3.2983 | 0.9966 |
3.4992 | 18.0 | 9000 | 3.2931 | 0.9962 |
3.4827 | 18.2 | 9100 | 3.2877 | 0.9960 |
3.4456 | 18.4 | 9200 | 3.2828 | 0.9956 |
3.5042 | 18.6 | 9300 | 3.2753 | 0.9960 |
3.4347 | 18.8 | 9400 | 3.2682 | 0.9968 |
3.4161 | 19.0 | 9500 | 3.2632 | 0.9962 |
3.4209 | 19.2 | 9600 | 3.2591 | 0.9958 |
3.4458 | 19.4 | 9700 | 3.2498 | 0.9962 |
3.4085 | 19.6 | 9800 | 3.2460 | 0.9956 |
3.4897 | 19.8 | 9900 | 3.2420 | 0.9958 |
3.4025 | 20.0 | 10000 | 3.2348 | 0.9960 |
3.4297 | 20.2 | 10100 | 3.2282 | 0.9962 |
3.4365 | 20.4 | 10200 | 3.2221 | 0.9968 |
3.4129 | 20.6 | 10300 | 3.2183 | 0.9962 |
3.4254 | 20.8 | 10400 | 3.2141 | 0.9960 |
3.3604 | 21.0 | 10500 | 3.2090 | 0.9958 |
3.3915 | 21.2 | 10600 | 3.2024 | 0.9956 |
3.4077 | 21.4 | 10700 | 3.1985 | 0.9958 |
3.3831 | 21.6 | 10800 | 3.1936 | 0.9962 |
3.414 | 21.8 | 10900 | 3.1885 | 0.9960 |
3.3778 | 22.0 | 11000 | 3.1834 | 0.9958 |
3.3987 | 22.2 | 11100 | 3.1798 | 0.9954 |
3.4096 | 22.4 | 11200 | 3.1766 | 0.9956 |
3.3784 | 22.6 | 11300 | 3.1724 | 0.9960 |
3.4194 | 22.8 | 11400 | 3.1680 | 0.9958 |
3.3011 | 23.0 | 11500 | 3.1658 | 0.9958 |
3.3206 | 23.2 | 11600 | 3.1631 | 0.9956 |
3.3476 | 23.4 | 11700 | 3.1577 | 0.9956 |
3.3604 | 23.6 | 11800 | 3.1540 | 0.9949 |
3.4032 | 23.8 | 11900 | 3.1475 | 0.9949 |
3.3523 | 24.0 | 12000 | 3.1421 | 0.9947 |
3.3223 | 24.2 | 12100 | 3.1386 | 0.9949 |
3.3869 | 24.4 | 12200 | 3.1342 | 0.9941 |
3.3354 | 24.6 | 12300 | 3.1295 | 0.9943 |
3.288 | 24.8 | 12400 | 3.1268 | 0.9941 |
3.3012 | 25.0 | 12500 | 3.1214 | 0.9939 |
3.3247 | 25.2 | 12600 | 3.1181 | 0.9939 |
3.3291 | 25.4 | 12700 | 3.1167 | 0.9935 |
3.3392 | 25.6 | 12800 | 3.1127 | 0.9939 |
3.281 | 25.8 | 12900 | 3.1089 | 0.9943 |
3.3083 | 26.0 | 13000 | 3.1030 | 0.9951 |
3.3973 | 26.2 | 13100 | 3.0982 | 0.9945 |
3.2582 | 26.4 | 13200 | 3.0948 | 0.9956 |
3.2509 | 26.6 | 13300 | 3.0916 | 0.9947 |
3.3027 | 26.8 | 13400 | 3.0875 | 0.9954 |
3.295 | 27.0 | 13500 | 3.0833 | 0.9937 |
3.2916 | 27.2 | 13600 | 3.0805 | 0.9943 |
3.2945 | 27.4 | 13700 | 3.0774 | 0.9937 |
3.2584 | 27.6 | 13800 | 3.0747 | 0.9939 |
3.3343 | 27.8 | 13900 | 3.0699 | 0.9945 |
3.24 | 28.0 | 14000 | 3.0661 | 0.9949 |
3.2768 | 28.2 | 14100 | 3.0614 | 0.9941 |
3.2713 | 28.4 | 14200 | 3.0587 | 0.9935 |
3.1811 | 28.6 | 14300 | 3.0544 | 0.9935 |
3.3279 | 28.8 | 14400 | 3.0506 | 0.9945 |
3.3166 | 29.0 | 14500 | 3.0470 | 0.9943 |
3.2904 | 29.2 | 14600 | 3.0454 | 0.9945 |
3.1675 | 29.4 | 14700 | 3.0395 | 0.9941 |
3.2665 | 29.6 | 14800 | 3.0368 | 0.9939 |
3.2087 | 29.8 | 14900 | 3.0320 | 0.9943 |
3.3436 | 30.0 | 15000 | 3.0290 | 0.9945 |
3.2558 | 30.2 | 15100 | 3.0267 | 0.9941 |
3.2631 | 30.4 | 15200 | 3.0222 | 0.9941 |
3.3143 | 30.6 | 15300 | 3.0184 | 0.9941 |
3.1722 | 30.8 | 15400 | 3.0135 | 0.9943 |
3.1736 | 31.0 | 15500 | 3.0101 | 0.9937 |
3.2694 | 31.2 | 15600 | 3.0052 | 0.9941 |
3.2143 | 31.4 | 15700 | 3.0015 | 0.9937 |
3.2431 | 31.6 | 15800 | 2.9993 | 0.9939 |
3.194 | 31.8 | 15900 | 2.9961 | 0.9937 |
3.1784 | 32.0 | 16000 | 2.9906 | 0.9937 |
3.239 | 32.2 | 16100 | 2.9866 | 0.9930 |
3.1766 | 32.4 | 16200 | 2.9837 | 0.9945 |
3.2049 | 32.6 | 16300 | 2.9788 | 0.9945 |
3.2638 | 32.8 | 16400 | 2.9769 | 0.9943 |
3.1008 | 33.0 | 16500 | 2.9749 | 0.9941 |
3.1918 | 33.2 | 16600 | 2.9728 | 0.9947 |
3.2645 | 33.4 | 16700 | 2.9702 | 0.9949 |
3.1329 | 33.6 | 16800 | 2.9615 | 0.9949 |
3.2031 | 33.8 | 16900 | 2.9575 | 0.9947 |
3.1297 | 34.0 | 17000 | 2.9542 | 0.9947 |
3.115 | 34.2 | 17100 | 2.9521 | 0.9947 |
3.1786 | 34.4 | 17200 | 2.9503 | 0.9947 |
3.1434 | 34.6 | 17300 | 2.9452 | 0.9949 |
3.2159 | 34.8 | 17400 | 2.9415 | 0.9943 |
3.1425 | 35.0 | 17500 | 2.9366 | 0.9943 |
3.1596 | 35.2 | 17600 | 2.9328 | 0.9943 |
3.1411 | 35.4 | 17700 | 2.9308 | 0.9935 |
3.2655 | 35.6 | 17800 | 2.9263 | 0.9941 |
3.1058 | 35.8 | 17900 | 2.9235 | 0.9928 |
3.1415 | 36.0 | 18000 | 2.9210 | 0.9930 |
3.1031 | 36.2 | 18100 | 2.9178 | 0.9935 |
3.1074 | 36.4 | 18200 | 2.9148 | 0.9939 |
3.0887 | 36.6 | 18300 | 2.9107 | 0.9937 |
3.2359 | 36.8 | 18400 | 2.9078 | 0.9932 |
3.137 | 37.0 | 18500 | 2.9060 | 0.9935 |
3.1064 | 37.2 | 18600 | 2.9044 | 0.9935 |
3.0584 | 37.4 | 18700 | 2.9010 | 0.9947 |
3.1004 | 37.6 | 18800 | 2.8977 | 0.9943 |
3.1034 | 37.8 | 18900 | 2.8948 | 0.9945 |
3.2163 | 38.0 | 19000 | 2.8906 | 0.9945 |
3.0611 | 38.2 | 19100 | 2.8864 | 0.9949 |
3.0713 | 38.4 | 19200 | 2.8852 | 0.9947 |
3.1233 | 38.6 | 19300 | 2.8816 | 0.9947 |
3.1374 | 38.8 | 19400 | 2.8776 | 0.9943 |
3.157 | 39.0 | 19500 | 2.8758 | 0.9937 |
3.1202 | 39.2 | 19600 | 2.8747 | 0.9935 |
3.0945 | 39.4 | 19700 | 2.8713 | 0.9941 |
3.0415 | 39.6 | 19800 | 2.8680 | 0.9947 |
3.0462 | 39.8 | 19900 | 2.8626 | 0.9941 |
3.1603 | 40.0 | 20000 | 2.8618 | 0.9943 |
3.0741 | 40.2 | 20100 | 2.8571 | 0.9945 |
3.0228 | 40.4 | 20200 | 2.8556 | 0.9949 |
3.1765 | 40.6 | 20300 | 2.8511 | 0.9943 |
3.027 | 40.8 | 20400 | 2.8478 | 0.9949 |
3.0472 | 41.0 | 20500 | 2.8451 | 0.9949 |
3.0993 | 41.2 | 20600 | 2.8446 | 0.9937 |
3.0562 | 41.4 | 20700 | 2.8414 | 0.9943 |
3.1409 | 41.6 | 20800 | 2.8383 | 0.9945 |
3.004 | 41.8 | 20900 | 2.8355 | 0.9943 |
3.0377 | 42.0 | 21000 | 2.8352 | 0.9945 |
3.1136 | 42.2 | 21100 | 2.8304 | 0.9949 |
3.0709 | 42.4 | 21200 | 2.8272 | 0.9947 |
3.0435 | 42.6 | 21300 | 2.8227 | 0.9947 |
3.0247 | 42.8 | 21400 | 2.8226 | 0.9943 |
3.0393 | 43.0 | 21500 | 2.8220 | 0.9949 |
3.037 | 43.2 | 21600 | 2.8182 | 0.9954 |
3.0403 | 43.4 | 21700 | 2.8149 | 0.9951 |
3.1406 | 43.6 | 21800 | 2.8141 | 0.9947 |
2.9519 | 43.8 | 21900 | 2.8129 | 0.9943 |
2.9742 | 44.0 | 22000 | 2.8075 | 0.9949 |
3.0384 | 44.2 | 22100 | 2.8039 | 0.9947 |
3.0387 | 44.4 | 22200 | 2.8021 | 0.9951 |
3.0851 | 44.6 | 22300 | 2.8025 | 0.9945 |
3.0079 | 44.8 | 22400 | 2.7977 | 0.9945 |
2.9731 | 45.0 | 22500 | 2.7951 | 0.9937 |
2.9938 | 45.2 | 22600 | 2.7972 | 0.9939 |
2.9564 | 45.4 | 22700 | 2.7926 | 0.9939 |
Framework versions
- Transformers 4.43.4
- Pytorch 2.4.1
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.
Model tree for sqrk/COPAS-mms1ball-Nov28
Base model
facebook/mms-1b-all