COPAS-mms1ball-Nov28

This model is a fine-tuned version of facebook/mms-1b-all on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7926
  • Wer: 0.9939

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 3
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
41.8398 0.2 100 37.3207 1.0
35.3547 0.4 200 27.8741 1.0
24.7565 0.6 300 19.3606 1.0
17.5639 0.8 400 12.4668 1.0
11.4454 1.0 500 8.1410 1.0
7.2036 1.2 600 6.0696 1.0
5.8017 1.4 700 5.3140 1.0
5.1698 1.6 800 5.0560 1.0
5.0254 1.8 900 4.9179 1.0
4.905 2.0 1000 4.8243 1.0
4.7647 2.2 1100 4.7402 1.0
4.736 2.4 1200 4.6689 1.0
4.6916 2.6 1300 4.6021 1.0
4.5545 2.8 1400 4.5514 1.0
4.5882 3.0 1500 4.5018 1.0
4.5573 3.2 1600 4.4525 1.0
4.4508 3.4 1700 4.4071 1.0
4.369 3.6 1800 4.3695 1.0
4.3941 3.8 1900 4.3237 1.0
4.3409 4.0 2000 4.2806 1.0
4.3205 4.2 2100 4.2383 1.0
4.2341 4.4 2200 4.1957 1.0
4.225 4.6 2300 4.1566 1.0
4.2211 4.8 2400 4.1210 1.0
4.1923 5.0 2500 4.0818 1.0
4.1785 5.2 2600 4.0491 1.0
4.1258 5.4 2700 4.0162 1.0
4.058 5.6 2800 3.9873 1.0
4.0715 5.8 2900 3.9629 1.0
4.0675 6.0 3000 3.9299 1.0
4.0338 6.2 3100 3.9041 1.0
3.9778 6.4 3200 3.8747 1.0
3.9507 6.6 3300 3.8510 0.9998
3.9829 6.8 3400 3.8248 0.9998
3.9373 7.0 3500 3.8036 0.9998
3.9433 7.2 3600 3.7812 0.9998
3.8741 7.4 3700 3.7618 0.9996
3.9197 7.6 3800 3.7420 0.9996
3.8497 7.8 3900 3.7223 0.9996
3.8934 8.0 4000 3.7031 0.9996
3.8427 8.2 4100 3.6863 0.9998
3.7761 8.4 4200 3.6698 0.9992
3.8544 8.6 4300 3.6574 0.9992
3.7864 8.8 4400 3.6425 0.9987
3.7913 9.0 4500 3.6284 0.9985
3.8103 9.2 4600 3.6162 0.9983
3.813 9.4 4700 3.6125 0.9985
3.7552 9.6 4800 3.5955 0.9983
3.744 9.8 4900 3.5832 0.9983
3.7656 10.0 5000 3.5749 0.9983
3.7119 10.2 5100 3.5686 0.9979
3.7246 10.4 5200 3.5613 0.9979
3.6999 10.6 5300 3.5483 0.9979
3.6942 10.8 5400 3.5395 0.9979
3.7076 11.0 5500 3.5338 0.9979
3.6577 11.2 5600 3.5219 0.9973
3.6771 11.4 5700 3.5147 0.9968
3.6948 11.6 5800 3.5055 0.9966
3.6699 11.8 5900 3.4969 0.9970
3.6306 12.0 6000 3.4868 0.9968
3.6393 12.2 6100 3.4800 0.9966
3.6745 12.4 6200 3.4712 0.9964
3.6641 12.6 6300 3.4659 0.9962
3.6167 12.8 6400 3.4595 0.9962
3.5831 13.0 6500 3.4537 0.9968
3.614 13.2 6600 3.4478 0.9966
3.6363 13.4 6700 3.4400 0.9966
3.6048 13.6 6800 3.4337 0.9966
3.5488 13.8 6900 3.4302 0.9966
3.5874 14.0 7000 3.4221 0.9964
3.5673 14.2 7100 3.4161 0.9962
3.5918 14.4 7200 3.4074 0.9964
3.6221 14.6 7300 3.4017 0.9964
3.516 14.8 7400 3.3931 0.9962
3.5529 15.0 7500 3.3872 0.9960
3.5173 15.2 7600 3.3806 0.9962
3.5608 15.4 7700 3.3721 0.9962
3.6101 15.6 7800 3.3639 0.9960
3.546 15.8 7900 3.3600 0.9958
3.481 16.0 8000 3.3549 0.9956
3.5324 16.2 8100 3.3471 0.9958
3.48 16.4 8200 3.3426 0.9962
3.5563 16.6 8300 3.3362 0.9956
3.5228 16.8 8400 3.3274 0.9949
3.4865 17.0 8500 3.3205 0.9954
3.5468 17.2 8600 3.3145 0.9962
3.4576 17.4 8700 3.3095 0.9962
3.4646 17.6 8800 3.3037 0.9964
3.4869 17.8 8900 3.2983 0.9966
3.4992 18.0 9000 3.2931 0.9962
3.4827 18.2 9100 3.2877 0.9960
3.4456 18.4 9200 3.2828 0.9956
3.5042 18.6 9300 3.2753 0.9960
3.4347 18.8 9400 3.2682 0.9968
3.4161 19.0 9500 3.2632 0.9962
3.4209 19.2 9600 3.2591 0.9958
3.4458 19.4 9700 3.2498 0.9962
3.4085 19.6 9800 3.2460 0.9956
3.4897 19.8 9900 3.2420 0.9958
3.4025 20.0 10000 3.2348 0.9960
3.4297 20.2 10100 3.2282 0.9962
3.4365 20.4 10200 3.2221 0.9968
3.4129 20.6 10300 3.2183 0.9962
3.4254 20.8 10400 3.2141 0.9960
3.3604 21.0 10500 3.2090 0.9958
3.3915 21.2 10600 3.2024 0.9956
3.4077 21.4 10700 3.1985 0.9958
3.3831 21.6 10800 3.1936 0.9962
3.414 21.8 10900 3.1885 0.9960
3.3778 22.0 11000 3.1834 0.9958
3.3987 22.2 11100 3.1798 0.9954
3.4096 22.4 11200 3.1766 0.9956
3.3784 22.6 11300 3.1724 0.9960
3.4194 22.8 11400 3.1680 0.9958
3.3011 23.0 11500 3.1658 0.9958
3.3206 23.2 11600 3.1631 0.9956
3.3476 23.4 11700 3.1577 0.9956
3.3604 23.6 11800 3.1540 0.9949
3.4032 23.8 11900 3.1475 0.9949
3.3523 24.0 12000 3.1421 0.9947
3.3223 24.2 12100 3.1386 0.9949
3.3869 24.4 12200 3.1342 0.9941
3.3354 24.6 12300 3.1295 0.9943
3.288 24.8 12400 3.1268 0.9941
3.3012 25.0 12500 3.1214 0.9939
3.3247 25.2 12600 3.1181 0.9939
3.3291 25.4 12700 3.1167 0.9935
3.3392 25.6 12800 3.1127 0.9939
3.281 25.8 12900 3.1089 0.9943
3.3083 26.0 13000 3.1030 0.9951
3.3973 26.2 13100 3.0982 0.9945
3.2582 26.4 13200 3.0948 0.9956
3.2509 26.6 13300 3.0916 0.9947
3.3027 26.8 13400 3.0875 0.9954
3.295 27.0 13500 3.0833 0.9937
3.2916 27.2 13600 3.0805 0.9943
3.2945 27.4 13700 3.0774 0.9937
3.2584 27.6 13800 3.0747 0.9939
3.3343 27.8 13900 3.0699 0.9945
3.24 28.0 14000 3.0661 0.9949
3.2768 28.2 14100 3.0614 0.9941
3.2713 28.4 14200 3.0587 0.9935
3.1811 28.6 14300 3.0544 0.9935
3.3279 28.8 14400 3.0506 0.9945
3.3166 29.0 14500 3.0470 0.9943
3.2904 29.2 14600 3.0454 0.9945
3.1675 29.4 14700 3.0395 0.9941
3.2665 29.6 14800 3.0368 0.9939
3.2087 29.8 14900 3.0320 0.9943
3.3436 30.0 15000 3.0290 0.9945
3.2558 30.2 15100 3.0267 0.9941
3.2631 30.4 15200 3.0222 0.9941
3.3143 30.6 15300 3.0184 0.9941
3.1722 30.8 15400 3.0135 0.9943
3.1736 31.0 15500 3.0101 0.9937
3.2694 31.2 15600 3.0052 0.9941
3.2143 31.4 15700 3.0015 0.9937
3.2431 31.6 15800 2.9993 0.9939
3.194 31.8 15900 2.9961 0.9937
3.1784 32.0 16000 2.9906 0.9937
3.239 32.2 16100 2.9866 0.9930
3.1766 32.4 16200 2.9837 0.9945
3.2049 32.6 16300 2.9788 0.9945
3.2638 32.8 16400 2.9769 0.9943
3.1008 33.0 16500 2.9749 0.9941
3.1918 33.2 16600 2.9728 0.9947
3.2645 33.4 16700 2.9702 0.9949
3.1329 33.6 16800 2.9615 0.9949
3.2031 33.8 16900 2.9575 0.9947
3.1297 34.0 17000 2.9542 0.9947
3.115 34.2 17100 2.9521 0.9947
3.1786 34.4 17200 2.9503 0.9947
3.1434 34.6 17300 2.9452 0.9949
3.2159 34.8 17400 2.9415 0.9943
3.1425 35.0 17500 2.9366 0.9943
3.1596 35.2 17600 2.9328 0.9943
3.1411 35.4 17700 2.9308 0.9935
3.2655 35.6 17800 2.9263 0.9941
3.1058 35.8 17900 2.9235 0.9928
3.1415 36.0 18000 2.9210 0.9930
3.1031 36.2 18100 2.9178 0.9935
3.1074 36.4 18200 2.9148 0.9939
3.0887 36.6 18300 2.9107 0.9937
3.2359 36.8 18400 2.9078 0.9932
3.137 37.0 18500 2.9060 0.9935
3.1064 37.2 18600 2.9044 0.9935
3.0584 37.4 18700 2.9010 0.9947
3.1004 37.6 18800 2.8977 0.9943
3.1034 37.8 18900 2.8948 0.9945
3.2163 38.0 19000 2.8906 0.9945
3.0611 38.2 19100 2.8864 0.9949
3.0713 38.4 19200 2.8852 0.9947
3.1233 38.6 19300 2.8816 0.9947
3.1374 38.8 19400 2.8776 0.9943
3.157 39.0 19500 2.8758 0.9937
3.1202 39.2 19600 2.8747 0.9935
3.0945 39.4 19700 2.8713 0.9941
3.0415 39.6 19800 2.8680 0.9947
3.0462 39.8 19900 2.8626 0.9941
3.1603 40.0 20000 2.8618 0.9943
3.0741 40.2 20100 2.8571 0.9945
3.0228 40.4 20200 2.8556 0.9949
3.1765 40.6 20300 2.8511 0.9943
3.027 40.8 20400 2.8478 0.9949
3.0472 41.0 20500 2.8451 0.9949
3.0993 41.2 20600 2.8446 0.9937
3.0562 41.4 20700 2.8414 0.9943
3.1409 41.6 20800 2.8383 0.9945
3.004 41.8 20900 2.8355 0.9943
3.0377 42.0 21000 2.8352 0.9945
3.1136 42.2 21100 2.8304 0.9949
3.0709 42.4 21200 2.8272 0.9947
3.0435 42.6 21300 2.8227 0.9947
3.0247 42.8 21400 2.8226 0.9943
3.0393 43.0 21500 2.8220 0.9949
3.037 43.2 21600 2.8182 0.9954
3.0403 43.4 21700 2.8149 0.9951
3.1406 43.6 21800 2.8141 0.9947
2.9519 43.8 21900 2.8129 0.9943
2.9742 44.0 22000 2.8075 0.9949
3.0384 44.2 22100 2.8039 0.9947
3.0387 44.4 22200 2.8021 0.9951
3.0851 44.6 22300 2.8025 0.9945
3.0079 44.8 22400 2.7977 0.9945
2.9731 45.0 22500 2.7951 0.9937
2.9938 45.2 22600 2.7972 0.9939
2.9564 45.4 22700 2.7926 0.9939

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.1
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for sqrk/COPAS-mms1ball-Nov28

Finetuned
(247)
this model