minilm-imdb / README.md
spolivin's picture
Update README.md
984e4d3
---
license: mit
base_model: microsoft/MiniLM-L12-H384-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: minilm-imdb
results:
- task:
name: text-classification
type: text-classification
dataset:
name: imdb
type: imdb
config: default
split: train
args: default
metrics:
- name: accuracy
type: accuracy
value: 0.922880
- name: f1
type: f1
value: 0.922831
datasets:
- imdb
language:
- en
pipeline_tag: text-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# minilm-imdb
This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2403
- Accuracy: 0.9229
- F1: 0.9228
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.1511 | 1.0 | 293 | 0.2212 | 0.9234 | 0.9229 |
| 0.1047 | 2.0 | 586 | 0.2211 | 0.9230 | 0.9217 |
| 0.1008 | 3.0 | 879 | 0.2403 | 0.9229 | 0.9228 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0