spoiled's picture
update model card README.md
24c7850
|
raw
history blame
1.79 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-large-condaqa-neg-tag-token-classifier
    results: []

roberta-large-condaqa-neg-tag-token-classifier

This model is a fine-tuned version of roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0453
  • Precision: 0.0
  • Recall: 0.0
  • F1: 0.0
  • Accuracy: 0.9857

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 4 0.1549 0.0 0.0 0.0 0.9588
No log 2.0 8 0.1007 0.0 0.0 0.0 0.9588
No log 3.0 12 0.0592 0.0 0.0 0.0 0.9818
No log 4.0 16 0.0453 0.0 0.0 0.0 0.9857

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.10.1
  • Datasets 2.6.1
  • Tokenizers 0.13.1