spawn99's picture
End of training
a6c9dbd verified
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: modernbert-wine-classification
    results: []

modernbert-wine-classification

This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1409
  • Accuracy: 0.7115
  • F1: 0.7184

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
5.0513 0.3333 226 4.6666 0.0150 0.0139
2.9839 0.6667 452 2.4637 0.2933 0.3601
2.0766 1.0 678 1.8938 0.4410 0.5005
1.5464 1.3333 904 1.6542 0.4547 0.5265
1.4301 1.6667 1130 1.4822 0.4976 0.5625
1.2864 2.0 1356 1.3587 0.4388 0.5155
0.7659 2.3333 1582 1.2553 0.5637 0.6038
0.7489 2.6667 1808 1.1776 0.5639 0.6072
0.658 3.0 2034 1.1178 0.5851 0.6249
0.3545 3.3333 2260 1.0968 0.6086 0.6372
0.3468 3.6667 2486 1.1013 0.6502 0.6693
0.3072 4.0 2712 1.0774 0.6637 0.6816
0.1741 4.3333 2938 1.1204 0.6946 0.7043
0.1531 4.6667 3164 1.1361 0.7065 0.7134
0.1556 5.0 3390 1.1409 0.7115 0.7184

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0