zmbfeng's picture
figures list and table list propagated up
f9cf3d0
raw
history blame
19.3 kB
import subprocess
import streamlit as st
import cv2
import numpy as np
from PIL import Image
import pytesseract
def get_pdf_page_count(pdf_path):
try:
# Running pdfinfo command to get information about the PDF
result = subprocess.run(['pdfinfo', pdf_path], stdout=subprocess.PIPE, text=True)
# Parsing the output to find the line with the number of pages
for line in result.stdout.split('\n'):
if 'Pages:' in line:
return int(line.split(':')[1].strip())
except Exception as e:
print(f"An error occurred: {e}")
return None
#configurable extract rectange rectangle size
def extract_rectangle_from_image(gray, min_width, min_height):
bounding_boxes = []
#gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
#edges = cv2.Canny(gray, 10, 200, apertureSize=3)
kernel = np.ones((3,3), np.uint8)
dilated_edges = cv2.dilate(edges, kernel, iterations=1)
contours, _ = cv2.findContours(dilated_edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
#contours, _ = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
index = 0
for cnt in contours:
approx = cv2.approxPolyDP(cnt, 0.01*cv2.arcLength(cnt, True), True)
#approx = cv2.approxPolyDP(cnt, 0.1*cv2.arcLength(cnt, True), True)
if len(approx) == 4: # Rectangle check
x, y, w, h = cv2.boundingRect(approx)
# print(f"x: {x}, y: {y}, w: {w}, h: {h}")
if w >= min_width and h >= min_height:
bounding_boxes.append((x, y, w, h))
#print(x, y, w, h)
return bounding_boxes
def is_close(box1, box2, threshold=10):
# Calculate the distance between the top-left corners of the two boxes
distance = ((box1[0] - box2[0]) ** 2 + (box1[1] - box2[1]) ** 2) ** 0.5
return distance < threshold
def remove_close_boxes(boxes, threshold=10):
kept_boxes = []
for box in boxes:
# Assume the box is not close to others by default
is_close_to_others = False
for kept_box in kept_boxes:
if is_close(box, kept_box, threshold):
is_close_to_others = True
break
# If the box is not close to any box we've kept, add it to the list of kept boxes
if not is_close_to_others:
kept_boxes.append(box)
return kept_boxes
def is_contained(box1, box2):
"""
Check if box1 is contained within box2.
Each box is defined as (x, y, w, h).
"""
x1, y1, w1, h1 = box1
x2, y2, w2, h2 = box2
# Check if all corners of box1 are inside box2
return x2 <= x1 and y2 <= y1 and x2 + w2 >= x1 + w1 and y2 + h2 >= y1 + h1
def remove_contained_boxes(boxes):
"""
Remove boxes that are contained within other boxes.
"""
non_contained_boxes = []
for i, box1 in enumerate(boxes):
# Check if there's another box that contains box1
if not any(is_contained(box1, box2) for j, box2 in enumerate(boxes) if i != j):
non_contained_boxes.append(box1)
return non_contained_boxes
def draw_colored_boxes_on_image_np(image, boxes_list,color_tuple):
for x, y, w, h in boxes_list:
#x, y, w, h = box[0]
cv2.rectangle(image, (x, y), (x + w, y + h), color_tuple, thickness=5)
def is_filled_rectangle(image, rect, background_threshold=10, variance_threshold=0.1):
x, y, w, h = rect
roi = image[y+1:y+h-1, x+1:x+w-1]
return np.all(roi == 0)
def get_below_box(image_np, x, y,width,step=15):
#print("x,y,width="+str(x)+","+str(y)+","+str(width))
index_y = -1
#print("get_below_box"+str(image_np.shape))
if y+step < image_np.shape[0]:
index_y = y
while index_y+step < image_np.shape[0]:
#print(str( np.all(image_np[index_y:index_y+step,x:x+width] == 255)))
# image_np_copy = image_np.copy()
# bgr_image = cv2.cvtColor(image_np_copy, cv2.COLOR_GRAY2BGR)
# cv2.rectangle(bgr_image, (x, index_y), (x + width, index_y +step), color_tuple, thickness=5)
# display_image_np(bgr_image)
if np.all(image_np[index_y:index_y+step,x:x+width] == 255):
# index_y += step
break
index_y += step
return index_y
def get_above_box(image_np, x, y,width,step=15):
#print("x,y,width="+str(x)+","+str(y)+","+str(width))
index_y = -1
#print("get_below_box"+str(image_np.shape))
if y-step > 0:
index_y = y
while index_y-step > 0:
#print(str( np.all(image_np[index_y:index_y+step,x:x+width] == 255)))
# image_np_copy = image_np.copy()
# bgr_image = cv2.cvtColor(image_np_copy, cv2.COLOR_GRAY2BGR)
# color_tuple=(0, 255, 0)
# cv2.rectangle(bgr_image, (x, index_y-step), (x + width, index_y), color_tuple, thickness=5)
# display_image_np(bgr_image)
if np.all(image_np[index_y-step:index_y,x:x+width] == 255):
# index_y += step
break
index_y -= step
return index_y
def is_note_rectangle(image_np, rect):
x, y, w, h = rect
roi = image_np[y+1:y+h-1, x+1:x+w-1]
roi_converted = Image.fromarray(cv2.cvtColor(roi, cv2.COLOR_BGR2RGB))
text = pytesseract.image_to_string(roi_converted)
text = text.strip()
note_str="note"
print("is note text box="+str(text.lower().startswith(note_str.lower())))
return text.lower().startswith(note_str.lower())
def extract_bounding_boxes_from_image_np(image_np, bounding_boxes_list, above_check_offset, above_caption_offset, color_tuple):
image_np_copy=image_np.copy()
rect_content_list=[]
above_rect_content_list=[]
figures_image_list=[]
tables_image_list=[]
index = 0
for box in bounding_boxes_list:
x, y, w, h = box
if not is_filled_rectangle(image_np_copy, box):
# print("box="+str(box)+"not filled")
y_index= get_below_box(image_np, x, y+h,w)
if y_index == -1 or is_note_rectangle(image_np_copy, box):
# print("below text not found")
rect_content =image_np[y:y+h, x:x+w]
# rect_content_list.append(rect_content)
cv2.rectangle(image_np_copy, (x, y), (x+w, y+h), color_tuple, cv2.FILLED)
else:
# print("below text found")
rect_content =image_np[y:y_index, x:x+w]
# rect_content_list.append(rect_content)
cv2.rectangle(image_np_copy, (x, y), (x+w, y_index), color_tuple, cv2.FILLED)
cv2.rectangle(image_np_copy, (x, y), (x+w, y+h), color_tuple, cv2.FILLED)
above_box_y= get_above_box(image_np, x, y,w)
if above_box_y == -1 or above_box_y == y:
# print("box="+str(box)+"no above box")
above_rect_content_list.append(None)
rect_content_list.append(rect_content)
else:
# print("box="+str(box)+"above box exist")
above_rect_content = image_np[above_box_y:y, x:x+w]
# above_rect_content_list.append(above_rect_content)
above_converted = Image.fromarray(cv2.cvtColor(above_rect_content, cv2.COLOR_BGR2RGB))
text = pytesseract.image_to_string(above_converted)
text = text.strip()
figure_str ="Figure"
table_str ="Table"
if text.lower().startswith(figure_str.lower()):
print(text)
figures_image_list.append((text,rect_content))
elif text.lower().startswith(table_str.lower()):
print(text)
tables_image_list.append((text,rect_content))
else:
above_rect_content_list.append((text, rect_content))
rect_content_list.append(rect_content)
cv2.rectangle(image_np_copy, (x, above_box_y), (x+w, y), color_tuple, cv2.FILLED)
# above_rect_content = image_np[y-above_check_offset:y, x:x+w]
# if np.all(above_rect_content == 255):
# # print("box="+str(box)+"above all white")
# above_rect_content_list.append(None)
# else:
# # print("box="+str(box)+"above not all white")
# above_rect_content = image_np[y-above_caption_offset:y, x:x+w]
# above_rect_content_list.append(above_rect_content)
# cv2.rectangle(image_np_copy, (x, y), (x+w, y-above_caption_offset), color_tuple, cv2.FILLED)
index += 1
# else:
# print("box="+str(box)+"filled")
return rect_content_list,above_rect_content_list, figures_image_list, tables_image_list, image_np_copy
def find_hor_lines_in_image_np(min_width, min_height,image_np):
# Apply a horizontal kernel to emphasize horizontal lines
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1050, 5)) # Adjust size according to your document
morphed = cv2.morphologyEx(image_np, cv2.MORPH_CLOSE, kernel)
# Detect edges
edges = cv2.Canny(morphed, 50, 150, apertureSize=3)
# Detect lines using HoughLinesP
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=100, maxLineGap=10) # Adjust parameters as needed
return lines
def draw_colored_lines_on_image_np(image, lines,color_tuple):
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(image, (x1, y1), (x2, y2), color_tuple, 3)
def segment_image_np(image_np,hor_lines_list):
# print("in segment_image_np image_np start")
# display_image_np(image_np)
# print("in segment_image_np image_np end")
segments = []
previous_y = 0
for line in sorted(hor_lines_list, key=lambda x: x[0][1]): # Sort lines by their y-coordinate
x1, y1, x2, y2 = line[0]
segment = image_np[previous_y:y1, :]
segments.append(segment)
previous_y = y2 # Update to start the next segment from the end of the current line
# Don't forget the last segment
last_segment =image_np[previous_y:, :]
segments.append(last_segment)
return segments
def filter_segments_by_min_height(segments, min_height):
return [segment for segment in segments if segment.shape[0] > min_height]
def draw_edges(np_image):
color = (0, 255, 0) # Green
# Define the thickness of the rectangle lines
thickness = 5
# Get the dimensions of the image
try:
height, width = np_image.shape[:2]
except Exception as e:
print("An error occurred:", e)
# Coordinates for the rectangle: start from (0,0) to (width, height)
# We draw from 0+thickness//2 and width-thickness//2 to respect the thickness and not go out of bounds
cv2.rectangle(np_image, (thickness // 2, thickness // 2), (width - thickness // 2, height - thickness // 2), color,
thickness)
def is_image_np_two_columns(image_np,horizontal_margin,vertical_margin):
page_x_center = image_np.shape[1]//2
page_height=image_np.shape[0]
image_middle_np =image_np[vertical_margin:(page_height-vertical_margin), page_x_center-horizontal_margin:page_x_center+horizontal_margin]
#display_image_np(image_middle_np)
return np.all(image_middle_np == 255)
def extract_two_columns_text(image_index,image_np,debug):
# formatted_index_string = f"{index:03d}"
if is_image_np_two_columns(image_np,20,10):
page_x_center = image_np.shape[1] // 2
# print(page_x_center)
temp_array = image_np.copy()
left_column_array = temp_array[:, :page_x_center]
temp_array = image_np.copy()
right_column_array = temp_array[:, page_x_center:]
left_column_img = Image.fromarray(cv2.cvtColor(left_column_array, cv2.COLOR_BGR2RGB))
left_column_array_bgr_image = cv2.cvtColor(left_column_array, cv2.COLOR_GRAY2BGR)
draw_edges(left_column_array_bgr_image)
# imageio.imwrite("/content/gdrive/MyDrive/Avatar/demo_pdf_ingestion_steps/page_"+formatted_index_string + "step8_left_column.png", left_column_img)
right_column_img = Image.fromarray(cv2.cvtColor(right_column_array, cv2.COLOR_BGR2RGB))
right_column_array_bgr_image = cv2.cvtColor(right_column_array, cv2.COLOR_GRAY2BGR)
draw_edges(right_column_array_bgr_image)
# imageio.imwrite("/content/gdrive/MyDrive/Avatar/demo_pdf_ingestion_steps/page_"+formatted_index_string + "step8_right_column.png", right_column_img)
if debug:
print("left column image start")
# display(left_column_img)
# st.image(Image.fromarray(left_column_array_bgr_image)) # to_be_displayed
print("left column image end")
print("right column image start")
# display(right_column_img)
# st.image(Image.fromarray(right_column_array_bgr_image)) # to_be_displayed
print("right column image end")
left_text = pytesseract.image_to_string(left_column_img)
# with open("/content/gdrive/MyDrive/Avatar/demo_pdf_ingestion_steps/page_"+formatted_index_string + "step9_left_column_text.txt", 'w') as file:
# file.write(left_text)
print("Extracted Text:\n", left_text)
right_text = pytesseract.image_to_string(right_column_img)
# with open("/content/gdrive/MyDrive/Avatar/demo_pdf_ingestion_steps/page_"+formatted_index_string + "step9_right_column_text.txt", 'w') as file:
# file.write(right_text)
print("Extracted Text:\n", right_text)
return left_text + right_text
else:
return "error"
def get_where_image_np_two_columns_stops(image_np,horizontal_margin,vertical_margin):
page_x_center = image_np.shape[1]//2
page_height=image_np.shape[0]
image_middle_np =image_np[vertical_margin:(page_height-vertical_margin), page_x_center-horizontal_margin:page_x_center+horizontal_margin]
#display_image_np(image_middle_np)
return np.where(image_middle_np != 255)
# indices = np.where(image_middle_np != 255)
# print(len(indices[0]))
# for i in range(len(indices[0])):
# print(f"Index: {indices[0][i], indices[1][i]}, Value: {image_middle_np[indices[0][i], indices[1][i]]}")
def gray_pdf_image_np_to_text(image_index,gray_pdf_image_np, debug=False):
bounding_boxes_list = extract_rectangle_from_image(gray_pdf_image_np, 500, 20)
bounding_boxes_list = remove_close_boxes (bounding_boxes_list, 10)
bounding_boxes_list = remove_contained_boxes(bounding_boxes_list)
if debug:
bgr_image = cv2.cvtColor(gray_pdf_image_np, cv2.COLOR_GRAY2BGR)
color_tuple = (0, 255, 0)
draw_colored_boxes_on_image_np(bgr_image, bounding_boxes_list, color_tuple)
# st.image(Image.fromarray(bgr_image)) #to_be_displayed
text_box_list, above_test_box_list,figures_image_list,tables_image_list, cropped_image = extract_bounding_boxes_from_image_np(gray_pdf_image_np,
bounding_boxes_list, 30,
50, (255, 255, 255))
if debug:
debug_text_box_index = 0
for text_box, above_text_box in zip(text_box_list, above_test_box_list):
print("text box start")
if above_text_box is not None:
print(above_text_box[0])#to_be_displayed
# st.write(above_text_box[0])#to_be_displayed
# st.image(Image.fromarray(above_text_box[1]))#to_be_displayed
# st.write(text)
# st.image(Image.fromarray(text_box))#to_be_displayed
debug_text_box_index = debug_text_box_index + 1
for figure in figures_image_list:
print(figure[0])
# st.write(figure[0])#to_be_displayed
# st.image(Image.fromarray(figure[1]))#to_be_displayed
for table in tables_image_list:
print(table[0])
# st.write(table[0])#to_be_displayed
# st.image(Image.fromarray(table[1]))#to_be_displayed
# st.image(Image.fromarray(cropped_image))#to_be_displayed
found_hor_lines_list = find_hor_lines_in_image_np(1050, 5, cropped_image)
if found_hor_lines_list is not None:
bgr_image = cv2.cvtColor(gray_pdf_image_np, cv2.COLOR_GRAY2BGR)
draw_colored_lines_on_image_np(bgr_image, found_hor_lines_list, (0, 255, 0))
print("detected Lines start")
# st.image(Image.fromarray(bgr_image)) #to_be_displayed
print("detected lines end")
page_segment_np_list = segment_image_np(cropped_image, found_hor_lines_list)
if debug:
debug_page_segment_index = 0
for element in page_segment_np_list:
print("element start")
bgr_image = cv2.cvtColor(element, cv2.COLOR_GRAY2BGR)
draw_edges(bgr_image)
# st.image(Image.fromarray(bgr_image))#to_be_displayed
debug_page_segment_index = debug_page_segment_index + 1
print("element end")
min_height_filtered_page_segment_np_list = filter_segments_by_min_height(page_segment_np_list, 50)
max_height_image = max(min_height_filtered_page_segment_np_list, key=lambda image: image.shape[0])
else:
max_height_image = cropped_image.copy()
# st.write("selected segment")
# print("max height image start")
# st.image(Image.fromarray(max_height_image))#to_be_displayed
# print("max height image end")
print("start text extraction")
text=extract_two_columns_text(image_index,max_height_image,debug)
print("gray_pdf_image_np_to_text extracted text",text)
if text == "error":
print("not two columns")
max_height_image_converted = Image.fromarray(cv2.cvtColor(max_height_image, cv2.COLOR_BGR2RGB))
text = pytesseract.image_to_string(max_height_image_converted)
text = text.strip()
toc_str="table of contents"
# print("Extracted Text:\n", text)
if text.lower().startswith(toc_str.lower()):
#if "Table of Contents" in text:
print("Table of Contents")
# display_image_np(max_height_image)
#print(text)
return("Table of Contents")
else:
print("not Table of Contents")
indeces_stop=get_where_image_np_two_columns_stops(max_height_image,20,10)
print(indeces_stop[0][0])
print(max_height_image.shape[0])
y_start=get_above_box(max_height_image, 0, indeces_stop[0][0],max_height_image.shape[1])
if debug:
bgr_image = cv2.cvtColor(max_height_image, cv2.COLOR_GRAY2BGR)
color_tuple=(0, 255, 0)
cv2.rectangle(bgr_image, (0, y_start), (max_height_image.shape[1], max_height_image.shape[0]), color_tuple, thickness=5)
print("still in the middle start")
# st.image(Image.fromarray(bgr_image))
print("still in the middle end")
left_over_content =max_height_image[y_start:max_height_image.shape[0], 0:max_height_image.shape[1]]
if debug:
print("left over start")
# st.image(Image.fromarray(left_over_content))
print("left over end")
max_height_image_copy=max_height_image.copy()
cv2.rectangle(max_height_image_copy, (0, y_start), (max_height_image.shape[1], max_height_image.shape[0]), (255, 255, 255), cv2.FILLED)
if debug:
print("no left over start")
# st.image(Image.fromarray(max_height_image_copy))
print("no left over end")
text=extract_two_columns_text(max_height_image_copy,debug)
if text == "error":
return("error")
else:
return figures_image_list,tables_image_list,text
else:
return figures_image_list,tables_image_list,text