Spaces:
Sleeping
Sleeping
File size: 19,283 Bytes
ad5ca2c d6482c4 15cd602 ad5ca2c d6482c4 15cd602 c6269e3 229ebda c6269e3 229ebda bfc7f18 229ebda bfc7f18 229ebda d6482c4 15cd602 8dfad76 15cd602 8dfad76 15cd602 8dfad76 15cd602 8dfad76 bfc7f18 c6269e3 229ebda c6269e3 229ebda c6269e3 bfc7f18 229ebda 3411406 229ebda 3411406 229ebda bfc7f18 229ebda bfc7f18 229ebda bfc7f18 229ebda f9cf3d0 229ebda f9cf3d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import subprocess
import streamlit as st
import cv2
import numpy as np
from PIL import Image
import pytesseract
def get_pdf_page_count(pdf_path):
try:
# Running pdfinfo command to get information about the PDF
result = subprocess.run(['pdfinfo', pdf_path], stdout=subprocess.PIPE, text=True)
# Parsing the output to find the line with the number of pages
for line in result.stdout.split('\n'):
if 'Pages:' in line:
return int(line.split(':')[1].strip())
except Exception as e:
print(f"An error occurred: {e}")
return None
#configurable extract rectange rectangle size
def extract_rectangle_from_image(gray, min_width, min_height):
bounding_boxes = []
#gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
#edges = cv2.Canny(gray, 10, 200, apertureSize=3)
kernel = np.ones((3,3), np.uint8)
dilated_edges = cv2.dilate(edges, kernel, iterations=1)
contours, _ = cv2.findContours(dilated_edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
#contours, _ = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
index = 0
for cnt in contours:
approx = cv2.approxPolyDP(cnt, 0.01*cv2.arcLength(cnt, True), True)
#approx = cv2.approxPolyDP(cnt, 0.1*cv2.arcLength(cnt, True), True)
if len(approx) == 4: # Rectangle check
x, y, w, h = cv2.boundingRect(approx)
# print(f"x: {x}, y: {y}, w: {w}, h: {h}")
if w >= min_width and h >= min_height:
bounding_boxes.append((x, y, w, h))
#print(x, y, w, h)
return bounding_boxes
def is_close(box1, box2, threshold=10):
# Calculate the distance between the top-left corners of the two boxes
distance = ((box1[0] - box2[0]) ** 2 + (box1[1] - box2[1]) ** 2) ** 0.5
return distance < threshold
def remove_close_boxes(boxes, threshold=10):
kept_boxes = []
for box in boxes:
# Assume the box is not close to others by default
is_close_to_others = False
for kept_box in kept_boxes:
if is_close(box, kept_box, threshold):
is_close_to_others = True
break
# If the box is not close to any box we've kept, add it to the list of kept boxes
if not is_close_to_others:
kept_boxes.append(box)
return kept_boxes
def is_contained(box1, box2):
"""
Check if box1 is contained within box2.
Each box is defined as (x, y, w, h).
"""
x1, y1, w1, h1 = box1
x2, y2, w2, h2 = box2
# Check if all corners of box1 are inside box2
return x2 <= x1 and y2 <= y1 and x2 + w2 >= x1 + w1 and y2 + h2 >= y1 + h1
def remove_contained_boxes(boxes):
"""
Remove boxes that are contained within other boxes.
"""
non_contained_boxes = []
for i, box1 in enumerate(boxes):
# Check if there's another box that contains box1
if not any(is_contained(box1, box2) for j, box2 in enumerate(boxes) if i != j):
non_contained_boxes.append(box1)
return non_contained_boxes
def draw_colored_boxes_on_image_np(image, boxes_list,color_tuple):
for x, y, w, h in boxes_list:
#x, y, w, h = box[0]
cv2.rectangle(image, (x, y), (x + w, y + h), color_tuple, thickness=5)
def is_filled_rectangle(image, rect, background_threshold=10, variance_threshold=0.1):
x, y, w, h = rect
roi = image[y+1:y+h-1, x+1:x+w-1]
return np.all(roi == 0)
def get_below_box(image_np, x, y,width,step=15):
#print("x,y,width="+str(x)+","+str(y)+","+str(width))
index_y = -1
#print("get_below_box"+str(image_np.shape))
if y+step < image_np.shape[0]:
index_y = y
while index_y+step < image_np.shape[0]:
#print(str( np.all(image_np[index_y:index_y+step,x:x+width] == 255)))
# image_np_copy = image_np.copy()
# bgr_image = cv2.cvtColor(image_np_copy, cv2.COLOR_GRAY2BGR)
# cv2.rectangle(bgr_image, (x, index_y), (x + width, index_y +step), color_tuple, thickness=5)
# display_image_np(bgr_image)
if np.all(image_np[index_y:index_y+step,x:x+width] == 255):
# index_y += step
break
index_y += step
return index_y
def get_above_box(image_np, x, y,width,step=15):
#print("x,y,width="+str(x)+","+str(y)+","+str(width))
index_y = -1
#print("get_below_box"+str(image_np.shape))
if y-step > 0:
index_y = y
while index_y-step > 0:
#print(str( np.all(image_np[index_y:index_y+step,x:x+width] == 255)))
# image_np_copy = image_np.copy()
# bgr_image = cv2.cvtColor(image_np_copy, cv2.COLOR_GRAY2BGR)
# color_tuple=(0, 255, 0)
# cv2.rectangle(bgr_image, (x, index_y-step), (x + width, index_y), color_tuple, thickness=5)
# display_image_np(bgr_image)
if np.all(image_np[index_y-step:index_y,x:x+width] == 255):
# index_y += step
break
index_y -= step
return index_y
def is_note_rectangle(image_np, rect):
x, y, w, h = rect
roi = image_np[y+1:y+h-1, x+1:x+w-1]
roi_converted = Image.fromarray(cv2.cvtColor(roi, cv2.COLOR_BGR2RGB))
text = pytesseract.image_to_string(roi_converted)
text = text.strip()
note_str="note"
print("is note text box="+str(text.lower().startswith(note_str.lower())))
return text.lower().startswith(note_str.lower())
def extract_bounding_boxes_from_image_np(image_np, bounding_boxes_list, above_check_offset, above_caption_offset, color_tuple):
image_np_copy=image_np.copy()
rect_content_list=[]
above_rect_content_list=[]
figures_image_list=[]
tables_image_list=[]
index = 0
for box in bounding_boxes_list:
x, y, w, h = box
if not is_filled_rectangle(image_np_copy, box):
# print("box="+str(box)+"not filled")
y_index= get_below_box(image_np, x, y+h,w)
if y_index == -1 or is_note_rectangle(image_np_copy, box):
# print("below text not found")
rect_content =image_np[y:y+h, x:x+w]
# rect_content_list.append(rect_content)
cv2.rectangle(image_np_copy, (x, y), (x+w, y+h), color_tuple, cv2.FILLED)
else:
# print("below text found")
rect_content =image_np[y:y_index, x:x+w]
# rect_content_list.append(rect_content)
cv2.rectangle(image_np_copy, (x, y), (x+w, y_index), color_tuple, cv2.FILLED)
cv2.rectangle(image_np_copy, (x, y), (x+w, y+h), color_tuple, cv2.FILLED)
above_box_y= get_above_box(image_np, x, y,w)
if above_box_y == -1 or above_box_y == y:
# print("box="+str(box)+"no above box")
above_rect_content_list.append(None)
rect_content_list.append(rect_content)
else:
# print("box="+str(box)+"above box exist")
above_rect_content = image_np[above_box_y:y, x:x+w]
# above_rect_content_list.append(above_rect_content)
above_converted = Image.fromarray(cv2.cvtColor(above_rect_content, cv2.COLOR_BGR2RGB))
text = pytesseract.image_to_string(above_converted)
text = text.strip()
figure_str ="Figure"
table_str ="Table"
if text.lower().startswith(figure_str.lower()):
print(text)
figures_image_list.append((text,rect_content))
elif text.lower().startswith(table_str.lower()):
print(text)
tables_image_list.append((text,rect_content))
else:
above_rect_content_list.append((text, rect_content))
rect_content_list.append(rect_content)
cv2.rectangle(image_np_copy, (x, above_box_y), (x+w, y), color_tuple, cv2.FILLED)
# above_rect_content = image_np[y-above_check_offset:y, x:x+w]
# if np.all(above_rect_content == 255):
# # print("box="+str(box)+"above all white")
# above_rect_content_list.append(None)
# else:
# # print("box="+str(box)+"above not all white")
# above_rect_content = image_np[y-above_caption_offset:y, x:x+w]
# above_rect_content_list.append(above_rect_content)
# cv2.rectangle(image_np_copy, (x, y), (x+w, y-above_caption_offset), color_tuple, cv2.FILLED)
index += 1
# else:
# print("box="+str(box)+"filled")
return rect_content_list,above_rect_content_list, figures_image_list, tables_image_list, image_np_copy
def find_hor_lines_in_image_np(min_width, min_height,image_np):
# Apply a horizontal kernel to emphasize horizontal lines
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1050, 5)) # Adjust size according to your document
morphed = cv2.morphologyEx(image_np, cv2.MORPH_CLOSE, kernel)
# Detect edges
edges = cv2.Canny(morphed, 50, 150, apertureSize=3)
# Detect lines using HoughLinesP
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=100, maxLineGap=10) # Adjust parameters as needed
return lines
def draw_colored_lines_on_image_np(image, lines,color_tuple):
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(image, (x1, y1), (x2, y2), color_tuple, 3)
def segment_image_np(image_np,hor_lines_list):
# print("in segment_image_np image_np start")
# display_image_np(image_np)
# print("in segment_image_np image_np end")
segments = []
previous_y = 0
for line in sorted(hor_lines_list, key=lambda x: x[0][1]): # Sort lines by their y-coordinate
x1, y1, x2, y2 = line[0]
segment = image_np[previous_y:y1, :]
segments.append(segment)
previous_y = y2 # Update to start the next segment from the end of the current line
# Don't forget the last segment
last_segment =image_np[previous_y:, :]
segments.append(last_segment)
return segments
def filter_segments_by_min_height(segments, min_height):
return [segment for segment in segments if segment.shape[0] > min_height]
def draw_edges(np_image):
color = (0, 255, 0) # Green
# Define the thickness of the rectangle lines
thickness = 5
# Get the dimensions of the image
try:
height, width = np_image.shape[:2]
except Exception as e:
print("An error occurred:", e)
# Coordinates for the rectangle: start from (0,0) to (width, height)
# We draw from 0+thickness//2 and width-thickness//2 to respect the thickness and not go out of bounds
cv2.rectangle(np_image, (thickness // 2, thickness // 2), (width - thickness // 2, height - thickness // 2), color,
thickness)
def is_image_np_two_columns(image_np,horizontal_margin,vertical_margin):
page_x_center = image_np.shape[1]//2
page_height=image_np.shape[0]
image_middle_np =image_np[vertical_margin:(page_height-vertical_margin), page_x_center-horizontal_margin:page_x_center+horizontal_margin]
#display_image_np(image_middle_np)
return np.all(image_middle_np == 255)
def extract_two_columns_text(image_index,image_np,debug):
# formatted_index_string = f"{index:03d}"
if is_image_np_two_columns(image_np,20,10):
page_x_center = image_np.shape[1] // 2
# print(page_x_center)
temp_array = image_np.copy()
left_column_array = temp_array[:, :page_x_center]
temp_array = image_np.copy()
right_column_array = temp_array[:, page_x_center:]
left_column_img = Image.fromarray(cv2.cvtColor(left_column_array, cv2.COLOR_BGR2RGB))
left_column_array_bgr_image = cv2.cvtColor(left_column_array, cv2.COLOR_GRAY2BGR)
draw_edges(left_column_array_bgr_image)
# imageio.imwrite("/content/gdrive/MyDrive/Avatar/demo_pdf_ingestion_steps/page_"+formatted_index_string + "step8_left_column.png", left_column_img)
right_column_img = Image.fromarray(cv2.cvtColor(right_column_array, cv2.COLOR_BGR2RGB))
right_column_array_bgr_image = cv2.cvtColor(right_column_array, cv2.COLOR_GRAY2BGR)
draw_edges(right_column_array_bgr_image)
# imageio.imwrite("/content/gdrive/MyDrive/Avatar/demo_pdf_ingestion_steps/page_"+formatted_index_string + "step8_right_column.png", right_column_img)
if debug:
print("left column image start")
# display(left_column_img)
# st.image(Image.fromarray(left_column_array_bgr_image)) # to_be_displayed
print("left column image end")
print("right column image start")
# display(right_column_img)
# st.image(Image.fromarray(right_column_array_bgr_image)) # to_be_displayed
print("right column image end")
left_text = pytesseract.image_to_string(left_column_img)
# with open("/content/gdrive/MyDrive/Avatar/demo_pdf_ingestion_steps/page_"+formatted_index_string + "step9_left_column_text.txt", 'w') as file:
# file.write(left_text)
print("Extracted Text:\n", left_text)
right_text = pytesseract.image_to_string(right_column_img)
# with open("/content/gdrive/MyDrive/Avatar/demo_pdf_ingestion_steps/page_"+formatted_index_string + "step9_right_column_text.txt", 'w') as file:
# file.write(right_text)
print("Extracted Text:\n", right_text)
return left_text + right_text
else:
return "error"
def get_where_image_np_two_columns_stops(image_np,horizontal_margin,vertical_margin):
page_x_center = image_np.shape[1]//2
page_height=image_np.shape[0]
image_middle_np =image_np[vertical_margin:(page_height-vertical_margin), page_x_center-horizontal_margin:page_x_center+horizontal_margin]
#display_image_np(image_middle_np)
return np.where(image_middle_np != 255)
# indices = np.where(image_middle_np != 255)
# print(len(indices[0]))
# for i in range(len(indices[0])):
# print(f"Index: {indices[0][i], indices[1][i]}, Value: {image_middle_np[indices[0][i], indices[1][i]]}")
def gray_pdf_image_np_to_text(image_index,gray_pdf_image_np, debug=False):
bounding_boxes_list = extract_rectangle_from_image(gray_pdf_image_np, 500, 20)
bounding_boxes_list = remove_close_boxes (bounding_boxes_list, 10)
bounding_boxes_list = remove_contained_boxes(bounding_boxes_list)
if debug:
bgr_image = cv2.cvtColor(gray_pdf_image_np, cv2.COLOR_GRAY2BGR)
color_tuple = (0, 255, 0)
draw_colored_boxes_on_image_np(bgr_image, bounding_boxes_list, color_tuple)
# st.image(Image.fromarray(bgr_image)) #to_be_displayed
text_box_list, above_test_box_list,figures_image_list,tables_image_list, cropped_image = extract_bounding_boxes_from_image_np(gray_pdf_image_np,
bounding_boxes_list, 30,
50, (255, 255, 255))
if debug:
debug_text_box_index = 0
for text_box, above_text_box in zip(text_box_list, above_test_box_list):
print("text box start")
if above_text_box is not None:
print(above_text_box[0])#to_be_displayed
# st.write(above_text_box[0])#to_be_displayed
# st.image(Image.fromarray(above_text_box[1]))#to_be_displayed
# st.write(text)
# st.image(Image.fromarray(text_box))#to_be_displayed
debug_text_box_index = debug_text_box_index + 1
for figure in figures_image_list:
print(figure[0])
# st.write(figure[0])#to_be_displayed
# st.image(Image.fromarray(figure[1]))#to_be_displayed
for table in tables_image_list:
print(table[0])
# st.write(table[0])#to_be_displayed
# st.image(Image.fromarray(table[1]))#to_be_displayed
# st.image(Image.fromarray(cropped_image))#to_be_displayed
found_hor_lines_list = find_hor_lines_in_image_np(1050, 5, cropped_image)
if found_hor_lines_list is not None:
bgr_image = cv2.cvtColor(gray_pdf_image_np, cv2.COLOR_GRAY2BGR)
draw_colored_lines_on_image_np(bgr_image, found_hor_lines_list, (0, 255, 0))
print("detected Lines start")
# st.image(Image.fromarray(bgr_image)) #to_be_displayed
print("detected lines end")
page_segment_np_list = segment_image_np(cropped_image, found_hor_lines_list)
if debug:
debug_page_segment_index = 0
for element in page_segment_np_list:
print("element start")
bgr_image = cv2.cvtColor(element, cv2.COLOR_GRAY2BGR)
draw_edges(bgr_image)
# st.image(Image.fromarray(bgr_image))#to_be_displayed
debug_page_segment_index = debug_page_segment_index + 1
print("element end")
min_height_filtered_page_segment_np_list = filter_segments_by_min_height(page_segment_np_list, 50)
max_height_image = max(min_height_filtered_page_segment_np_list, key=lambda image: image.shape[0])
else:
max_height_image = cropped_image.copy()
# st.write("selected segment")
# print("max height image start")
# st.image(Image.fromarray(max_height_image))#to_be_displayed
# print("max height image end")
print("start text extraction")
text=extract_two_columns_text(image_index,max_height_image,debug)
print("gray_pdf_image_np_to_text extracted text",text)
if text == "error":
print("not two columns")
max_height_image_converted = Image.fromarray(cv2.cvtColor(max_height_image, cv2.COLOR_BGR2RGB))
text = pytesseract.image_to_string(max_height_image_converted)
text = text.strip()
toc_str="table of contents"
# print("Extracted Text:\n", text)
if text.lower().startswith(toc_str.lower()):
#if "Table of Contents" in text:
print("Table of Contents")
# display_image_np(max_height_image)
#print(text)
return("Table of Contents")
else:
print("not Table of Contents")
indeces_stop=get_where_image_np_two_columns_stops(max_height_image,20,10)
print(indeces_stop[0][0])
print(max_height_image.shape[0])
y_start=get_above_box(max_height_image, 0, indeces_stop[0][0],max_height_image.shape[1])
if debug:
bgr_image = cv2.cvtColor(max_height_image, cv2.COLOR_GRAY2BGR)
color_tuple=(0, 255, 0)
cv2.rectangle(bgr_image, (0, y_start), (max_height_image.shape[1], max_height_image.shape[0]), color_tuple, thickness=5)
print("still in the middle start")
# st.image(Image.fromarray(bgr_image))
print("still in the middle end")
left_over_content =max_height_image[y_start:max_height_image.shape[0], 0:max_height_image.shape[1]]
if debug:
print("left over start")
# st.image(Image.fromarray(left_over_content))
print("left over end")
max_height_image_copy=max_height_image.copy()
cv2.rectangle(max_height_image_copy, (0, y_start), (max_height_image.shape[1], max_height_image.shape[0]), (255, 255, 255), cv2.FILLED)
if debug:
print("no left over start")
# st.image(Image.fromarray(max_height_image_copy))
print("no left over end")
text=extract_two_columns_text(max_height_image_copy,debug)
if text == "error":
return("error")
else:
return figures_image_list,tables_image_list,text
else:
return figures_image_list,tables_image_list,text
|