house / app.py
zhangshengdong's picture
Update app.py
6f44353
import logging
import traceback
from io import BytesIO
import gradio as gr
import numpy as np
import torch
from PIL import Image
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from torchvision import transforms
from UTILS import get_more_dim
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = 'models/model_v48.pth'
model_pic_size = 512
model_class_num = 14
model = torch.load(model_path, map_location=torch.device('cpu'))
model = model.to(device)
colors = ['Black', 'Silver', 'White', 'Brown', 'LightCoral', 'Tomato', 'LightSalmon', 'Chocolate', 'Tan',
'PapayaWhip', 'Gold', 'Ivory', 'GreenYellow', 'Green', 'DarkSeaGreen', 'DarkTurquoise', 'LightBLue',
'SteelBlue']
mode = 'predict'
def get_predict(origin_img, need_subplot=False):
features, pad_width, pad_height = get_features(origin_img, pic_size=model_pic_size)
predict_npy, subplot_img = save_predict(model, features, device=device, class_num=model_class_num,
need_subplot=need_subplot)
return predict_npy, subplot_img, pad_width, pad_height
def save_predict(model, features, device, class_num=14, need_subplot=False):
cmap = ListedColormap(colors[:class_num])
model.eval()
with torch.no_grad():
features = features.to(device)
predictions = model(features)
features = torch.squeeze(features)
features = features.detach().cpu()
predictions = torch.squeeze(predictions)
predictions = predictions.detach().cpu()
features_len = features.shape[0]
origin_img = transforms.ToPILImage()(features[:3])
binary_img = features[3]
water_img = features[4]
predict_img = label_to_img(predictions)
predict_npy = predict_img.numpy().astype('uint8')
subplot = None
if need_subplot:
subplot = save_subplot(features_len, origin_img, predict_img, binary_img, water_img, vmax=class_num,
cmap=cmap)
return predict_npy, subplot
def label_to_img(label):
max_label_values, max_label_indices = torch.max(label, dim=0)
return max_label_indices
def save_subplot(features_len, origin_img, predict_img, feature_1=None, feature_2=None, vmax=14,
cmap=None):
plt.clf()
plt.close()
# colorbar 左 下 宽 高 ;设置colorbar位置;
rect = [0.92, 0.36, 0.015, 0.99 - 0.37 * 2]
fig = plt.figure()
subplot_num = features_len - 2 + 1
subplot_count = 0
subplot_count += 1
plt.subplot(1, subplot_num, subplot_count)
plt.imshow(origin_img)
if features_len > 3:
subplot_count += 1
plt.subplot(1, subplot_num, subplot_count)
plt.imshow(feature_1)
if features_len > 4:
subplot_count += 1
plt.subplot(1, subplot_num, subplot_count)
plt.imshow(feature_2)
subplot_count += 1
plt.subplot(1, subplot_num, subplot_count)
im = plt.imshow(predict_img, vmin=-1, vmax=vmax, cmap=cmap)
# 前面三个子图的总宽度 为 全部宽度的 0.9;剩下的0.1用来放置colorbar
fig.subplots_adjust(right=0.9)
cbar_ax = fig.add_axes(rect)
plt.colorbar(im, cax=cbar_ax)
with BytesIO() as out:
plt.savefig(out, dpi=300)
subplot_bytes = out.getvalue()
return subplot_bytes
def get_features(origin_img, pic_size):
img = origin_img.convert('RGB')
img_np = np.array(img)
try:
masked_binary_img, masked_water = get_more_dim(img_np, file_dir=None)
except Exception as e:
logging.error(e)
logging.error("=================")
logging.error(traceback.format_exc())
masked_binary_img = np.zeros(img_np.shape[:2], np.int32)
masked_water = np.zeros(img_np.shape[:2], np.int32)
img, pad_width, pad_height = transform_pic_shape(img, pic_size)
masked_binary_img, _, _ = transform_pic_shape(torch.tensor(masked_binary_img), pic_size)
masked_water, _, _ = transform_pic_shape(torch.tensor(masked_water), pic_size)
data_mode_dim = torch.stack((masked_binary_img, masked_water), axis=0)
img = transforms.ToTensor()(img)
featurs = torch.cat((img, data_mode_dim), dim=0)
featurs = torch.unsqueeze(featurs, dim=0)
return featurs, pad_width, pad_height
def transform_pic_shape(img, pic_size):
# 对于RGB图
# Image.size为(宽,高)
# array.shape为(高,宽,通道数)
# array.size为 高x宽x通道数 的总个数
height, width = get_image_shape(img)
if height > pic_size - 1 or width > pic_size - 1:
is_unsqueeze = False
if type(img) == torch.Tensor and len(img.shape) == 2:
img = torch.unsqueeze(img, dim=0)
is_unsqueeze = True
img = transforms.Resize(size=pic_size - 1, max_size=pic_size,
interpolation=transforms.InterpolationMode.NEAREST)(img)
if is_unsqueeze:
img = torch.squeeze(img)
height, width = get_image_shape(img)
pad_width = 0
pad_height = 0
if height < pic_size or width < pic_size:
# 当为 a 时,上下左右均填充 a 个像素
# 当为 (a, b) 时,左右填充 a 个像素,上下填充 b 个像素
# 当为 (a, b, c, d) 时,左上右下分别填充 a,b,c,d
# padding_mode: 填充模式,有 4 种模式,constant、edge、reflect、symmetric
pad_width = (pic_size - width) // 2
pad_height = (pic_size - height) // 2
img = transforms.Pad(
padding=[pad_width, pad_height, pic_size - pad_width - width, pic_size - pad_height - height],
fill=0)(img)
return img, pad_width, pad_height
def get_image_shape(img):
if type(img) == Image.Image:
width, height = img.size
else:
if len(img.shape) == 3:
channel_num, height, width = img.shape
else:
height, width = img.shape
return height, width
def greet(img):
predict_npy, subplot_img, pad_width, pad_height = get_predict(img, need_subplot=False)
predict_npy = predict_npy / model_class_num * 255
predict_img = Image.fromarray(predict_npy).convert(mode='L')
return predict_img
iface = gr.Interface(fn=greet, inputs=gr.Image(type="pil"), outputs="image")
# iface.launch(server_name="0.0.0.0", share=True)
iface.launch(server_name="0.0.0.0")