Spaces:
Sleeping
Sleeping
File size: 6,439 Bytes
17dff85 6f44353 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import logging
import traceback
from io import BytesIO
import gradio as gr
import numpy as np
import torch
from PIL import Image
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from torchvision import transforms
from UTILS import get_more_dim
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = 'models/model_v48.pth'
model_pic_size = 512
model_class_num = 14
model = torch.load(model_path, map_location=torch.device('cpu'))
model = model.to(device)
colors = ['Black', 'Silver', 'White', 'Brown', 'LightCoral', 'Tomato', 'LightSalmon', 'Chocolate', 'Tan',
'PapayaWhip', 'Gold', 'Ivory', 'GreenYellow', 'Green', 'DarkSeaGreen', 'DarkTurquoise', 'LightBLue',
'SteelBlue']
mode = 'predict'
def get_predict(origin_img, need_subplot=False):
features, pad_width, pad_height = get_features(origin_img, pic_size=model_pic_size)
predict_npy, subplot_img = save_predict(model, features, device=device, class_num=model_class_num,
need_subplot=need_subplot)
return predict_npy, subplot_img, pad_width, pad_height
def save_predict(model, features, device, class_num=14, need_subplot=False):
cmap = ListedColormap(colors[:class_num])
model.eval()
with torch.no_grad():
features = features.to(device)
predictions = model(features)
features = torch.squeeze(features)
features = features.detach().cpu()
predictions = torch.squeeze(predictions)
predictions = predictions.detach().cpu()
features_len = features.shape[0]
origin_img = transforms.ToPILImage()(features[:3])
binary_img = features[3]
water_img = features[4]
predict_img = label_to_img(predictions)
predict_npy = predict_img.numpy().astype('uint8')
subplot = None
if need_subplot:
subplot = save_subplot(features_len, origin_img, predict_img, binary_img, water_img, vmax=class_num,
cmap=cmap)
return predict_npy, subplot
def label_to_img(label):
max_label_values, max_label_indices = torch.max(label, dim=0)
return max_label_indices
def save_subplot(features_len, origin_img, predict_img, feature_1=None, feature_2=None, vmax=14,
cmap=None):
plt.clf()
plt.close()
# colorbar 左 下 宽 高 ;设置colorbar位置;
rect = [0.92, 0.36, 0.015, 0.99 - 0.37 * 2]
fig = plt.figure()
subplot_num = features_len - 2 + 1
subplot_count = 0
subplot_count += 1
plt.subplot(1, subplot_num, subplot_count)
plt.imshow(origin_img)
if features_len > 3:
subplot_count += 1
plt.subplot(1, subplot_num, subplot_count)
plt.imshow(feature_1)
if features_len > 4:
subplot_count += 1
plt.subplot(1, subplot_num, subplot_count)
plt.imshow(feature_2)
subplot_count += 1
plt.subplot(1, subplot_num, subplot_count)
im = plt.imshow(predict_img, vmin=-1, vmax=vmax, cmap=cmap)
# 前面三个子图的总宽度 为 全部宽度的 0.9;剩下的0.1用来放置colorbar
fig.subplots_adjust(right=0.9)
cbar_ax = fig.add_axes(rect)
plt.colorbar(im, cax=cbar_ax)
with BytesIO() as out:
plt.savefig(out, dpi=300)
subplot_bytes = out.getvalue()
return subplot_bytes
def get_features(origin_img, pic_size):
img = origin_img.convert('RGB')
img_np = np.array(img)
try:
masked_binary_img, masked_water = get_more_dim(img_np, file_dir=None)
except Exception as e:
logging.error(e)
logging.error("=================")
logging.error(traceback.format_exc())
masked_binary_img = np.zeros(img_np.shape[:2], np.int32)
masked_water = np.zeros(img_np.shape[:2], np.int32)
img, pad_width, pad_height = transform_pic_shape(img, pic_size)
masked_binary_img, _, _ = transform_pic_shape(torch.tensor(masked_binary_img), pic_size)
masked_water, _, _ = transform_pic_shape(torch.tensor(masked_water), pic_size)
data_mode_dim = torch.stack((masked_binary_img, masked_water), axis=0)
img = transforms.ToTensor()(img)
featurs = torch.cat((img, data_mode_dim), dim=0)
featurs = torch.unsqueeze(featurs, dim=0)
return featurs, pad_width, pad_height
def transform_pic_shape(img, pic_size):
# 对于RGB图
# Image.size为(宽,高)
# array.shape为(高,宽,通道数)
# array.size为 高x宽x通道数 的总个数
height, width = get_image_shape(img)
if height > pic_size - 1 or width > pic_size - 1:
is_unsqueeze = False
if type(img) == torch.Tensor and len(img.shape) == 2:
img = torch.unsqueeze(img, dim=0)
is_unsqueeze = True
img = transforms.Resize(size=pic_size - 1, max_size=pic_size,
interpolation=transforms.InterpolationMode.NEAREST)(img)
if is_unsqueeze:
img = torch.squeeze(img)
height, width = get_image_shape(img)
pad_width = 0
pad_height = 0
if height < pic_size or width < pic_size:
# 当为 a 时,上下左右均填充 a 个像素
# 当为 (a, b) 时,左右填充 a 个像素,上下填充 b 个像素
# 当为 (a, b, c, d) 时,左上右下分别填充 a,b,c,d
# padding_mode: 填充模式,有 4 种模式,constant、edge、reflect、symmetric
pad_width = (pic_size - width) // 2
pad_height = (pic_size - height) // 2
img = transforms.Pad(
padding=[pad_width, pad_height, pic_size - pad_width - width, pic_size - pad_height - height],
fill=0)(img)
return img, pad_width, pad_height
def get_image_shape(img):
if type(img) == Image.Image:
width, height = img.size
else:
if len(img.shape) == 3:
channel_num, height, width = img.shape
else:
height, width = img.shape
return height, width
def greet(img):
predict_npy, subplot_img, pad_width, pad_height = get_predict(img, need_subplot=False)
predict_npy = predict_npy / model_class_num * 255
predict_img = Image.fromarray(predict_npy).convert(mode='L')
return predict_img
iface = gr.Interface(fn=greet, inputs=gr.Image(type="pil"), outputs="image")
# iface.launch(server_name="0.0.0.0", share=True)
iface.launch(server_name="0.0.0.0")
|