File size: 6,439 Bytes
17dff85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f44353
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import logging
import traceback
from io import BytesIO

import gradio as gr
import numpy as np
import torch
from PIL import Image
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from torchvision import transforms

from UTILS import get_more_dim

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model_path = 'models/model_v48.pth'
model_pic_size = 512
model_class_num = 14
model = torch.load(model_path, map_location=torch.device('cpu'))
model = model.to(device)

colors = ['Black', 'Silver', 'White', 'Brown', 'LightCoral', 'Tomato', 'LightSalmon', 'Chocolate', 'Tan',
          'PapayaWhip', 'Gold', 'Ivory', 'GreenYellow', 'Green', 'DarkSeaGreen', 'DarkTurquoise', 'LightBLue',
          'SteelBlue']
mode = 'predict'


def get_predict(origin_img, need_subplot=False):
    features, pad_width, pad_height = get_features(origin_img, pic_size=model_pic_size)
    predict_npy, subplot_img = save_predict(model, features, device=device, class_num=model_class_num,
                                            need_subplot=need_subplot)
    return predict_npy, subplot_img, pad_width, pad_height


def save_predict(model, features, device, class_num=14, need_subplot=False):
    cmap = ListedColormap(colors[:class_num])

    model.eval()
    with torch.no_grad():
        features = features.to(device)

        predictions = model(features)

        features = torch.squeeze(features)
        features = features.detach().cpu()
        predictions = torch.squeeze(predictions)
        predictions = predictions.detach().cpu()

        features_len = features.shape[0]

        origin_img = transforms.ToPILImage()(features[:3])
        binary_img = features[3]
        water_img = features[4]
        predict_img = label_to_img(predictions)
        predict_npy = predict_img.numpy().astype('uint8')

        subplot = None
        if need_subplot:
            subplot = save_subplot(features_len, origin_img, predict_img, binary_img, water_img, vmax=class_num,
                                   cmap=cmap)

        return predict_npy, subplot


def label_to_img(label):
    max_label_values, max_label_indices = torch.max(label, dim=0)
    return max_label_indices


def save_subplot(features_len, origin_img, predict_img, feature_1=None, feature_2=None, vmax=14,
                 cmap=None):
    plt.clf()
    plt.close()

    # colorbar 左 下 宽 高 ;设置colorbar位置;
    rect = [0.92, 0.36, 0.015, 0.99 - 0.37 * 2]

    fig = plt.figure()
    subplot_num = features_len - 2 + 1
    subplot_count = 0

    subplot_count += 1
    plt.subplot(1, subplot_num, subplot_count)
    plt.imshow(origin_img)
    if features_len > 3:
        subplot_count += 1
        plt.subplot(1, subplot_num, subplot_count)
        plt.imshow(feature_1)
    if features_len > 4:
        subplot_count += 1
        plt.subplot(1, subplot_num, subplot_count)
        plt.imshow(feature_2)

    subplot_count += 1
    plt.subplot(1, subplot_num, subplot_count)
    im = plt.imshow(predict_img, vmin=-1, vmax=vmax, cmap=cmap)
    # 前面三个子图的总宽度 为 全部宽度的 0.9;剩下的0.1用来放置colorbar
    fig.subplots_adjust(right=0.9)
    cbar_ax = fig.add_axes(rect)
    plt.colorbar(im, cax=cbar_ax)

    with BytesIO() as out:
        plt.savefig(out, dpi=300)
        subplot_bytes = out.getvalue()
    return subplot_bytes


def get_features(origin_img, pic_size):
    img = origin_img.convert('RGB')
    img_np = np.array(img)
    try:
        masked_binary_img, masked_water = get_more_dim(img_np, file_dir=None)
    except Exception as e:
        logging.error(e)
        logging.error("=================")
        logging.error(traceback.format_exc())
        masked_binary_img = np.zeros(img_np.shape[:2], np.int32)
        masked_water = np.zeros(img_np.shape[:2], np.int32)
    img, pad_width, pad_height = transform_pic_shape(img, pic_size)
    masked_binary_img, _, _ = transform_pic_shape(torch.tensor(masked_binary_img), pic_size)
    masked_water, _, _ = transform_pic_shape(torch.tensor(masked_water), pic_size)
    data_mode_dim = torch.stack((masked_binary_img, masked_water), axis=0)
    img = transforms.ToTensor()(img)
    featurs = torch.cat((img, data_mode_dim), dim=0)
    featurs = torch.unsqueeze(featurs, dim=0)
    return featurs, pad_width, pad_height


def transform_pic_shape(img, pic_size):
    # 对于RGB图
    # Image.size为(宽,高)
    # array.shape为(高,宽,通道数)
    # array.size为 高x宽x通道数 的总个数
    height, width = get_image_shape(img)
    if height > pic_size - 1 or width > pic_size - 1:
        is_unsqueeze = False
        if type(img) == torch.Tensor and len(img.shape) == 2:
            img = torch.unsqueeze(img, dim=0)
            is_unsqueeze = True
        img = transforms.Resize(size=pic_size - 1, max_size=pic_size,
                                interpolation=transforms.InterpolationMode.NEAREST)(img)
        if is_unsqueeze:
            img = torch.squeeze(img)
        height, width = get_image_shape(img)

    pad_width = 0
    pad_height = 0
    if height < pic_size or width < pic_size:
        # 当为 a 时,上下左右均填充 a 个像素
        # 当为 (a, b) 时,左右填充 a 个像素,上下填充 b 个像素
        # 当为 (a, b, c, d) 时,左上右下分别填充 a,b,c,d
        # padding_mode: 填充模式,有 4 种模式,constant、edge、reflect、symmetric
        pad_width = (pic_size - width) // 2
        pad_height = (pic_size - height) // 2
        img = transforms.Pad(
            padding=[pad_width, pad_height, pic_size - pad_width - width, pic_size - pad_height - height],
            fill=0)(img)
    return img, pad_width, pad_height


def get_image_shape(img):
    if type(img) == Image.Image:
        width, height = img.size
    else:
        if len(img.shape) == 3:
            channel_num, height, width = img.shape
        else:
            height, width = img.shape
    return height, width


def greet(img):
    predict_npy, subplot_img, pad_width, pad_height = get_predict(img, need_subplot=False)
    predict_npy = predict_npy / model_class_num * 255
    predict_img = Image.fromarray(predict_npy).convert(mode='L')
    return predict_img


iface = gr.Interface(fn=greet, inputs=gr.Image(type="pil"), outputs="image")
# iface.launch(server_name="0.0.0.0", share=True)
iface.launch(server_name="0.0.0.0")